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Defining 
Computational Intelligence

... a system is computationally intelligent when it: deals 
only with numerical (low-level) data, has

a pattern recognition component, does not use knowledge 
in the AI sense...

J.C. Bezdek, On the relationship between neural networks, pattern recognition and 
intelligence, J. Approximate Reasoning, 6, 1992, 85-107

Defining 
Computational Intelligence

... CI substitutes intensive computation for insight into 
how the system works. NNs, FSs and EC were all 
shunned by classical system and control theorists. CI 
umbrellas and unifies these and other revolutionary 
methods

W.J.Karplus, 1996
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Defining 
Computational Intelligence

Computational Intelligence is a research endeavor aimed 
at conceptual and algorithmic integration of technologies 
of granular computing, neural networks and evolutionary 
computing

W. Pedrycz, Computational Intelligence: An Introduction,1997 

Dimensions of 
Computational Intelligence

global optimization

learning

abstracting

(Granular 

Copmuting)
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Synergy of components of
Computational Intelligence

Neurocomputing

Granular Computing

Evolutionary Optimization

Learning

Knowledge
Representation,
metaheuristics

Structural 
optimization

Knowledge Representation

Global optimization

Information granules are 
everywhere…

Spacial granulation: Image processing 
identification of segments (regions) and finding relationships 
between them

Temporal granulation: Signal processing
sampling signals in time and quantization in phase-space 
(discretization)

System modelling
System partitioning, human-centred interpretation,  
rule-based models, qualitative models…
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Granular Computing

Computing based on information granules:
basic entities recognized in problem description

Information granules: composed of elements
drawn together owing to their similarity,
functional closeness, spatial neighborhood, etc

Information granulation: a process of developing 
Information granules

Formal frameworks for
information granulation

G : Set theory, interval analysis

G : Fuzzy sets

G : Rough sets

G : Probabilistic granules

A: X G(X)

granule framework
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G r a n u l a r  C o m p u t i n g :
S e t  T h e o r y  a n d  I n t e r v a l  A n a l y s i s

• support basic processes of abstraction
by employing an idea of dichotomization 
• two-valued logic as a formal means of 
computing
• basic mechanism of abstraction
• information hiding
• level of specificity of information granules 
captured by set cardinality

G r a n u l a r  C o m p u t i n g :
F u z z y  S e t s

• departure from dichotomization (yes-no) 
• refinement of concepts by accepting 
continuous membership grades
(distinguishability through membership)
• based on ideas of multivalued (fuzzy) logic
• mechanism of abstraction capturing
qualitative as well as quantitative facet 
of concepts
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G r a n u l a r  C o m p u t i n g :
N o n - A r i s t o t e l i a n  V i e w

..in analyzing the Aristotelian codification, I had 
to deal with the two-valued, “either-or” type of 
orientation. In living, many issues are not so sharp, and 
therefore a system that posits the general sharpness of 
“either-or” and so objectifies “kind” , is unduly limited; 
it must be revised and more flexible in terms of “degree”…

A. Korzybski, 1933

Granular Computing:
Non-Aristotelian View

…it is a paradox, whose important familiarity fails to diminish, 
that the most highly developed and useful scientific theories are 
ostensibly expressed ion terms of objects never encountered 
in experience. And the “point-planet” of astronomy, 
the “perfect gas” or thermodynamics or the “pure species”
of genetics are equally remote from exact realization…

M. Black, 1938
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“ Impedence” M i s m a t c h

Designer/User: linguistic terms, design 

objectives, conflicting requirements

Computer Systems: two-valued logic

FUZZY SETS

G r a n u l a r  C o m p u t i n g :
R o u g h  S e t s

• defining information granules through 
their lower and upper bounds
• identifying regions with a lack of 
knowledge about concept
• expressing aspects of uncertainty 
through “rough” boundaries
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G r a n u l a r  C o m p u t i n g :
R o u g h  S e t s

A1 A2 A3 A4 A5

X

RoughSet(X, A)=(lower approximation, upper approximation)

Lower approximation ={A3}

Upper approximation ={A2, A3, A4}

G r a n u l a r  C o m p u t i n g :
P r o b a b i l i s t i c  g r a n u l e s

• granules represented by some probability 
functions (probability density functions)
• probabilistic relationships between elements 
in information granules
• calculus of probabilities as a processing 
environment
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Characterising granularity

Measuring  “size” of information granules

Smaller information granules – higher granularity (specificity)

Depends on the formal model of information granulation

Sets: cardinality
Fuzzy sets: σ-count
Probabilistic granules: variance (st. deviation)

Characterising granularity

High granularity

Low granularity
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Characterising granularity

Size vs. specificity

Usefulness

Granular  Worlds

granularity L H 

WW1

WW2

Qualitative Models Quantitative Models
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Defining a Granular World

G = <X, G, A, …>

Granular world granulation
framework

data
space

family of
granules

Communica t ion  

between granular worlds

granularity

L 

H W = < G, A ’>

W = < G, A>
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Communica t ion  

between granular worlds

granularity

L 

H W = < G, A ’>

W’ = < G, A>

G= set theory

Defining a Granular World

G = <X, G, A, C>

Granular world granulation
framework

data
space

family of
granules

communication
mechanism
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Example of an instance of 
Granular Computing

x x’

Sets:

Fuzzy 
Sets:

Example of interoperability 
of DM tasks realized in two 
different granular worlds

Rough Set is an outcome of interfacing two Data Mining
tasks with different granule sizes. 
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Main Points

n Granular Computing as an essential component 
of Computational Intelligence

n Diversity of fundamental technologies  
underlying GC (sets, fuzzy sets, rough sets…)

n Open fundamental problems of communication 
between granular worlds 

Mathematical Framework:
Sets and Intervals
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Historical Background

… all mathematical theories can be regarded as 
extensions of the general theory of sets … on 
these foundations I can state that I can build up the 
whole of the mathematics of the present day …

Bourbaki (1948), L’architecture des mathematiques, Les Grands 
Courants de la Pensee Mathematique, F. LeLionnais (ed.)

Historical Background

… despite the remoteness from sense-experience, we do have 
something like a perception of the objects of set theory, as 
is seen from the fact that the axioms force themselves upon 
us as being true. I don’t see any reason why we should 
have less confidence in this kind of perception, i.e. in 
mathematical intuition, than sense-perception …

Goedel (1940), The consistency of the axiom of choice and of the 
generalised continuum hypothesis with the axioms of set theory, 
Princeron University Press
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Historical Background

Georg Cantor
foundations of Set Theory 1874-1884

Paradoxes in initial theory:

- The cardinality of “set of all sets” vs. cardinality of the set of 
all subsets drawn from this set.

- Construction of sets paradox (Russel)

Historical Background

Modern Set Theory (ies)  - (eg. Goedel, 1940)

Abandons a uniform view of sets and introduces some form 
of “hierarchy”

Emphasises the semantical transformation (qualitative 
change) that occurs when grouping individual elements 
into sets or conversely when identifying sub-sets within a 
given set

Three primitive notions of: class, set and membership
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Historical Background

Modern Set Theory (ies)

Class - an entity corresponding to some but not necessarily 
all properties
(-> various classes represent conceptually different 
entities)

A class that is a member of some other class is considered a 
set, otherwise it is considered a proper class
(-> a “set of all sets” is a proper class)

Historical Background

Arythmetic defined on sets (intervals)

- Warmus, 1959, Sunaga, 1958, More, 1962

Guaranteed results of computation
- Hansen, 1975, Nikel, 1981

Granular Computing
- Zadeh, 1979, 1997
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The formalism of sets

Explicit specification
of finite sets

Implicit specification

Basic properties of sets

Cardinality

Set inclusion

Complement
(wro. universal set X)

Belonging
(characteristic function)
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Basic set operations

Union

Intersection

Complementation

Relative complementation: 
(subtraction)

Basic set operations

Cartesian product: 

Projection: 
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Properties of set operations

Properties of set operations



23

Functional mapping of sets

Direct mapping 

Inverse mapping 

Functional mapping of sets
 

f ( f -1(B1)) 

f -1(B1) 

B1 

B B 

A A 

f(A1) 

f -1(f(A1)) A1 

Composition of an image and a reciprocal image of a set

Note that:
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Functional mapping of sets

Distributivity and monotonicity  

Arythmetical operations on sets

General operation “op “

e.g. for “op “ = “-”

Note that:  

Overestimation of results  -> Dependency effect



25

Set enclosure

• Need to simplify description of the topologies of 
sets in order to quantify the overestimate of the 
image set (i.e. dependency effect)

- Hyperboxes
- Ellipsoids
- Polyhedrons

The use of enclosures leads to a secondary 
overestimation -> wrapping effect

Set enclosure

Enclosure of the operator “op “
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Interval analysis

Interval [x]={x   R | x    x- R and x    x+     R}∈ ∈ ∈≥ ≤

Definitions

Basic operations on intervals

Union and intersection

Interval union (to make intervals closed with respect of union)

Interval subtraction (to make intervals closed with respect of subtraction)
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Basic operations on intervals

Interval maximum of intervals

Interval minimum if intervals

Basic operations on intervals
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Arithmetical operations on intervals

Example of dependency effect for 
operations on intervals
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Example of wrapping effect for 
operations on intervals

[a]=[-0.9, 1.9]
[a][a]-2[a]=[-5.51, 5.41]    [-6, 6]⊂

[a]2-2[a]=[-3.8, 5.41]    [-4, 6]⊂

([a]-1)2=[-1, 2.61]    [-1, 3]⊂

Interval vectors

Definition: 

Example: 
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Interval vectors

The union and subtraction of hyperboxes produces in general a more complex  
topology. In order to make hyperboxes closed with respect of union and 
subtraction operation we define hyperbox union.

and hyperbox subtraction

Interval vectors

 

y1 x1 x1 

x 2 

x2 

y1 

[x] ∪[y] 

y1 x1 
x1  

x2=y 2 

x2=y2 

[x] 

y1 

[y] 

[x] ∪[y] 

[y] 

[x] 

y 2 

y2 

y+
2

x +2

y -2

x -2

y+
2  = x +2

y -2 = x -2

x-
1 y-

1 x+
1                   y

+
1

x-
1 x+

1 y-
1                        y

+
1
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Interval vectors

Arithmetical operations: 

Operations on the RHS are operations on intervals

Interval matrices

Definition: 
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Interval matrices

Basic operations: 

To make hyperboxes closed with respect of union and subtraction operation 
we define hyperbox union and hyperbox subtraction.

Interval martices

Arithmetical operations: 

Operations on the RHS are operations on interval vectors
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Interval martices

Note that for interval matrices: 

Violation of associativity is due to wrapping effect.
Subdistributivity is due to the dependency effect (repetition of 
[A] leads to an overestimate).

Interval martices

Example of wrapping: 
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Enclosure of functions

Natural enclosure of 

is obtained by substituting arithmetical operations
with equivalent interval arythmetic (repetition of [x] 
leads however to big overestimates of the enclosure
due to dependency effect)

Enclosure of functions

Example: 

Minimal enclosure 

Natural enclosure 
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Enclosure of functions

Centered enclosure of 

Enclosure of functions

Example: 
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Enclosure of functions

Space subdivision enclosure 

Enclosure of functions

Example: 
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Fuzzy Sets: A Motivation

n Data processing: Making sense of data

n Decision-making and control problems

n Image processing and computer vision

Formal expression of a concept of continuous boundaries

Making sense of dataMaking sense of data
Data MiningData Mining

Databases: information storage Databases: information storage 
and information retrieval using a and information retrieval using a 
formalism of query languagesformalism of query languages

useruser--friendly interface: allow for friendly interface: allow for 
linguistic querieslinguistic queries andand

abstraction/summarizationabstraction/summarization and and 
explanationexplanation mechanisms mechanisms 
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Control Problems

n Design a controller that maintains a
comfortable room temperature

n Design a highway traffic control system 
that assures safe driving environment

n Design a system that can park a car

Rule-based systems

n Expressing domain knowledge in a form 
of rules

n -- if condition then conclusion
n Easy to understand and acquire
n Modular system 
n Rules are generalizations of existing patterns of 

decision-making, classification, control,…
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Making sense of images
Granular Art

n Domain-oriented, common sense 
knowledge (landscape)

n - if a region is mostly green and highly textured
then it’s likely to be vegetation

n - if a region is intensely green and overlaps sky 
region then it’s likely to be a tree

n - if an image depicts an old tree and a young 
sampling then it could be a metaphor of a life cycle

Description of Sets

n Belongingness (inclusion)
n -enumerate (characterize) elements belonging to A

n Characteristic function

1

0

A(x)=0

A(x)=1

}1,0{:A →X
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Sets :
Characteristic Functions

Sets subscribe to the concept of dichotomy

      1A(x)  Ax =⇔∈

     0A(x)  Ax =⇔∉

Fuzzy Sets :
Membership Functions

n Admit a notion of partial membership of 
element to the concept

n the higher the membership value A(x), 
the more typical x is in A
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Fuzzy Sets :
A Definition

n Fuzzy set A is characterized by a 
membership function

A(x) =1 complete membership 
0<A(x)<1 partial membership

A(x) =0 complete exclusion

]1,0[:A →X

Description of Fuzzy Sets

n Membership function
n Characterize degree of belonging to A (degree of 

similarity, degree of preference)

1

0

0<A(x)<1

A(x)=1

: [0,1]A →X

A(x)=0
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Geometry of Fuzzy Sets

The Representation Theorem

)A(A ]1,0( αα α∈∪=

[0,1]sup ( )A Aα αα∈=

Fuzzy set A is represented by an infinite family of it’s α-cuts

In terms of membership functions fuzzy set is represented as
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Geometry of Sets

X = {x1, x2 } X ={x1, x2, x3}

[0  0]
[0 0 0]

Geometry of Fuzzy Sets

X = {x1, x2 } X ={x1, x2, x3}

[0  0]
[0 0 0]

[0.2  0.7]
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Operations on Fuzzy Sets

n Union

n Intersection

n Complement

))x(B),x(Amin()x)(BA( =I

))x(B),x(Amax()x)(BA( =U

)x(A1)x(A −=

Operations on Fuzzy Sets

n Union

n Intersection

n Complement

membership
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Overlap and underlap of
Fuzzy Sets

n A and its 
complement A

n A     A

n A     A

∪

∩

Properties of Sets

 B A BA                                    B A BA   laws sMorgan' De

  AA                       middle excluded of Law

  AA                      ion       contradict of Law

A A                                    A         A               Identity  
A  B) (A   A                           A           B) (A   A          Absorption

A A A                                     A          A A          eIdempotenc
)CA()BA(C)(BA          )CA()BA(C)(BA         vityDistributi

)CB(A CB)(A                    )CB(A CB)(A  ity       Associativ
A B BA                               A          B BAity      Commutativ

AA             Involution

∩=∪∪=∩

=∪

∅=∩

=∩=∅∪
=∪∩=∩∪

=∪=∩
∪∩∪=∩∪∩∪∩=∪∩

∩∩=∩∩∪∪=∪∪
∩=∩∪=∪

=

X

 X
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Properties of Fuzzy Sets

 B A BA                                    B A BA   laws sMorgan' De

  AA                       middle excluded of Law

  AA                      ion       contradict of Law

A A                                    A         A               Identity  
A  B) (A   A                           A           B) (A   A          Absorption

A A A                                     A          A A          eIdempotenc
)CA()BA(C)(BA          )CA()BA(C)(BA         vityDistributi

)CB(A CB)(A                    )CB(A CB)(A  ity       Associativ
A B BA                               A          B BAity      Commutativ

AA             Involution

∩=∪∪=∩

=∪

∅=∩

=∩=∅∪
=∪∩=∩∪

=∪=∩
∪∩∪=∩∪∩∪∩=∪∩

∩∩=∩∩∪∪=∪∪
∩=∩∪=∪

=

X

 X

DO NOT hold !!!

Overlap and underlap of 
Fuzzy Sets

n Law of contradiction does not hold:
overlap property

n Law of excluded middle does not hold:

underlap property

∅⊇∩ AA

X⊆∪AA
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Dichotomy Problem

“… the law of excluded middle is true 
when precise symbols are employed, 
but it is not true when symbols are 
vague, as, in fact, all symbols are. …”

Russel, 1923

Generalisation of Operations on 
Fuzzy Sets

t-norms

s-norms



48

Generalisation of Operations on 
Fuzzy Sets

Information granularity and
Fuzzy Sets

Energy measure of fuzziness

(weighted sum of elements in a fuzzy set)
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Information granularity and
Fuzzy Sets

Entropy measure of fuzziness

(weighted sum of hesitation about elements in a fuzzy set)

Comparison of Fuzzy Sets

n distance measures

n possibility measure

n necessity measure

n compatibility measure
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Comparison of Fuzzy Sets:
Distance measure

1p   dx|)x(B)x(A|)B,A(d p
p ≥−= ∫

X

∞=

=
=

p :distance vTchebysche

....

2p :distanceEuclidean 

1p :distance  gminHam

Comparison of Fuzzy Sets:
Possibility measure

))]x(B),x(A[min(sup)B,A(Poss x X∈=

degree of overlap between A and B

A
B

Poss(A,B)
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Possibility measure:
Main properties

))]x(B),x(A[min(sup)B,A(Poss x X∈=

)]C,B(Poss),C,A(Possmax[)C,BA(Poss =∪

Poss({x}, B) = B(x)

Comparison of Fuzzy Sets:
Necessity measure

degree of inclusion of A in B

))]x(B),x(A1[max(inf)B,A(Nec x −= ∈X

A

B
Nec(A,B)
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Nesessity measure:
Main properties

))]x(B),x(A1[max(inf)B,A(Nec x −= ∈X

Nec(A, X)=1        Nec(X, A)=0

Nec(A, A)= 0.5

Nec({x}, A)= A(x)

Comparison of Fuzzy Sets:
Compatibility measure

]1,0[u   );x(Xsup)u)(A,X(Comp )x(Au:x ∈= =

X, A: fuzzy sets defined in X

Comp(X,A)= Compatibility (X is A)
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Comparison of Fuzzy Sets:
Compatibility measure

]1,0[u   );x(Xsup)u)(A,X(Comp )x(Au:x ∈= =

x

AX

Comp

u

u

maximum

Comparison of Fuzzy Sets:
Compatibility measure



 =

==

==
≤⊂

otherwise

normalAX

,0
)A(xu if ,1

A)Comp(X, then }{xX if -

u X)(u) Comp(X,A then  X if -
A)(u),Comp(X'A)(u)Comp(X, then X' X if-

setsfuzzy  :,

0
0



54

Comparison of Fuzzy Sets:
Equality index

)( nimplicatio and inclusion
)(  inclusion model how to

)set theory recall(

)AB(&)BA(BA         

}x,...,x,x{ space finite
same  thein  Band A setsfuzzy    twoconsider

n21

→•
⊂•

⊂⊂=≡

=X

Inclusion and implication





>

≤
=→





>

≤
=→

∈

ba if  b/a

ba if  1
ba

ba if  0

ba if  1
 ba

nsimplicatio of  Examples

]1,0[b,a

ab

1

0



55

Comparison of Fuzzy Sets:
Equality index

))]x(A)x(B()),x(B)x(Amin[
n
1

BA
n

1i
iiii∑

=

→→=≡

Transformations of Fuzzy Sets

Extension principle

B=f(A)

B
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The Extension Principle

B = f(A)

B(y) = su px: y=f(x)  [A(x)]

B(y) =  sup A(x)

subject to

y = f(x)

The Extension Principle:
Example

X={a, b, c, d, e}

A(a)=1, A(b)=0.6, A(c)=0.2, A(d)=0.7, A(e)=0.9

B(β)=A(a)=1,
B(α)=max(A(b), A(d))=0.7
B(χ)=A(c)=0.2,
B(δ)=A(e)=0.9

f: A à B
f(a)=β, f(b)=α, f(c)=χ, f(d)=α, f(e)=δ
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Fuzzy Arythmetic

Fuzzy number

A(a, m, b)

Addition of fuzzy numbers

Fuzzy Arythmetic

Fuzzy multiplication, division etc. do not preserve
the linearity of the membership function

In general the use of a-cuts and The Representation 
Theorem results in a brute force method of carrying
out computing with fuzzy numbers


