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Collaborative processing

No direct interaction between databases

Goal: reveal structure common to all databases
through a process of collaboration

Approach: explore possibilities of collaboration 
through granular communication

Distributed sources of data (databases)

Horizontal collaboration

Databases about clients at various institutions 

Confidentiality of data: no direct sharing of data

(communication at the level of information granules)

Sharing information granules (level of granularity)
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Horizontal collaboration

Databases about same N clients at various institutions 

Confidentiality : no direct sharing of data
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Databases about various clients at several institutions
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Horizontal collaboration:
Fuzzy C-Means

]ii[d]ii[u
c

1i

2
ik

2
ik

N

1k
∑∑

==

ii jj

]jj[d]jj[u
c

1i

2
ik

2
ik

N

1k
∑∑

==

- Identify patterns by optimising
local objective functions in each data set

Horizontal collaboration:
Fuzzy C-Means
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Communication and
collaboration 
via partition matrices
U[ii], U[jj]

- Coordinate partition 
matrices in data sets
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Horizontal collaboration:
Computational details

Modified objective function

Optimization problem
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Horizontal collaboration:
Computational details
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Unconstrained optimisation of V with respect 
of partition matrix and Lagrange multipliers
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Horizontal collaboration:
Computational details
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Horizontal collaboration:
Computational details
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Horizontal collaboration:
Partition matrix
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Horizontal collaboration:
Prototypes
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Example: Boston housing data

14 features split into two groups (databases) A (ii=1) 
and B (ii=2)

Example: Boston housing data

Scenarios of collaboration:

 

A  B  α 

(a) 

A  B  α 

(b) 

A  B  α 

(c) 
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Boston housing data
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Quantification of collaboration

•Changes of prototypes

•Changes of membership grades (vis-à-vis situations 
with no collaboration)



10

Quantification of collaboration(1)

•Changes of prototypes

0.0 0.2 0.4 0.6 0.8 1.0 1.2

α

10

20

30

40

50
price of real estate

Quantification of collaboration (2)

•Changes of membership grades
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Interval State Estimation 
in Systems Modelling

State Estimation: definition

Identify a state uncertainty set X(.)

where Z(.) is a feasible measurements set
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State Estimation: definition

Using interval notation the measurement set is

and the state uncertainty set is

State Estimation: definition

The enclosure of the state uncertainty set is 
defined by the uncertainty bounds on system 
state variables

where
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State Estimation: definition

Relationship between sets

X([z]) state uncertainty 
set

X*([z]) enclosure of X(.)

Z([z]) measurement   
uncertainty set

Z*([z]) image of X(.) 
through g(.)

Monte Carlo method

The reference state estimates
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Linear Programming method

The application of LP requires linearisation of 
the state uncertainty set X([z])

Using 1-st order expansion of g(x)

The linearised state uncertainty set is

Linear Programming method

The linearised state uncertainty set has, in general, 
complex topology so that an ENCLOSURE of the set is 
sought as



15

Linear Programming method

The task can be expressed as 2n linear programs

Linear Programming method
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Linear Programming method

Example

Linear Programming method

Example

The cost function for i=1

The cost function for i=2
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Linear Programming method

Example

Evaluating [x] 
we obtain

Ellipsoid method

The linearised state uncertainty set is estimated 
by ellipsoids that have progressively reduced 
volume subject to problem constraints

Ellipsoid

The linearised measurement constraints
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Ellipsoid method

Note that the shrinking ellipsoid can imply increase of 
bounds in some dimensions

Ellipsoid method

Using tth constraint to update t-1th ellipsoid

The region Ft bounded by tth constraint also contains 
the state uncertainty set X1([z])
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Ellipsoid method

Ellipsoid method

Example

from the above we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 1, 2, 3 we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 1, 2, 3 we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 1, 2, 3 we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 1, 2, 3 we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have
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Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have
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Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have
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Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have
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Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have
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Sensitivity matrix method

The basis of the method is the observation that 
for a minimal measurement set the linearised 
uncertainty bounds can be calculated directly

However since we deal usually with the overdetermined 
measurement sets we calculate the pseudo-inverse of 
the Jacobean matrix – sensitivity matrix

The approximate linearised state uncertainty set is

Sensitivity matrix method



30

Sensitivity matrix method

Example

The sensitivity matrix is

Sensitivity matrix method

Using interval arythmetic formalism we calculate bounds 
on every state variable using corresponding rows of the 
sensitivity matrix
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Sensitivity matrix method

Sensitivity matrix method

The over-estimate of the state uncertainty set is 
due to the “inactive” constraints not being 
disregarded but taken into consideration in the 
sensitivity matrix calculation



32

Sensitivity matrix method

The real-life example

Sensitivity matrix method

State uncertainty variability sets (MC and LP)
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Sensitivity matrix method

State uncertainty variability sets (E and LP)

Sensitivity matrix method

State uncertainty variability sets (SM and LP) evaluated 
with additional meters
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Conclusions

1. Monte Carlo estimation – accurate but 
computationally very expensive

2. Linear Programming estimation – accurate and more 
efficient than MC but still very demanding 
computationally

3. Ellipsoid estimation – very efficient computationally 
but produces conservative bounds that also depend 
on the order of processing of the constraints

4. Sensitivity Matrix estimation – accuracy comparable 
to LP and efficiency comparable to Ellipsoid method.
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Information Structuring in 
Natural Language 
Communication:
Syntactical Approach

Motivation

n A new framework for Natural Language 
processing

n NL processing and Data Mining
n NL processing and information 

granulation
n Stimulus for future research (validated 

on some simple NL examples)
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Set representation of an NL

X – set of words;
P(X) – NL statements utilizing words X
G(X) – grammatically correct NL statements
A(X) – acceptably correct NL statements
S(X) – NL statements that are meaningful

 

P(X) 

G(X) 
X 

S(X) 

A(X) 

Set representation of an NL

n Syntactic analysis
n Statement is a member of A(X)

n Semantic analysis
n Statement is a member of S(X) (conveys a 

specific information arising from the 
purposeful combination of words into 
sentences)



37

Syntactic processing roots

n Nativist view of cognition
n Chomsky, Cartesian Linguistics (1965)
n All NLs share certain universal structural 

features
n Children acquire command of NL 

surprisingly fast regardless of the language
n Justification of syntactical analysis of NL

NL processing

n Lexical acquisition
n Naïve solution: lexicon construction (inflexible, 

error-prone, domain dependent)
n Corpora: annotated language samples as a source 

of information and statistics (step towards 
resolving ambiguity and uncertainty)

n From crisp (Homenda, 1991) to fuzzy relationships 
(defined on noun-phrases) as a means of 
capturing contextual information.
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NL processing

n Syntactical analysis
n Problems with NL ‘compilation’

n Need for the flexibility in application of the 
rules of grammar

n Baseline: sensible application of the 
context free grammars

NL processing

n Syntactical analysis
Sentence

Noun Verb

Student operates
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NL processing

n Context free grammars
(CFG proposed here generates a language that 

includes only a subset of English)

n Tuplet G=(V, T, P, S) is CFG
V – finite set of variables
T – finite set of terminal symbols
S – beginning symbol of the grammar
P – finite set of productions (pairs)

NL processing

n Example
G = ({“Sentence”,“Noun”,“Verb”}, 

{student, operates}, 
{“Sentence” -> “Noun” “Verb”, 
“Noun” -> student
“Verb” -> operates },
“Sentence” )
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Parsing NL

n Syntactical structuring

ADJ

students

DET NOUN

NOUN PHRASE VERB PHRASE

SENTENCE

VERB

DET

POST-VERB

NOUN PHR.

the were operating the optical

BE

equipmentbest

V-ING

ADJ NOUN

V-PAST

Parsing NL (ambiguity)

ADJ

student

DET NOUN PP

NOUN PHRASE VERB PHRASE

SENTENCE

VERB

DET NOUN

NOUN PHRASE

NOUN PHR.

DET NOUN

PP

N. PHR.PREP

DET NOUN

PREP

the first on the list saw the man with the camera

V-PAST
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Parsing NL (ambiguity)

ADJ

student

DET NOUN PP

NOUN PHRASE VERB PHRASE

SENTENCE

VERB

DET NOUN

NOUN PHRASE

NOUN PHR.

DET NOUN

PP

N. PHR.PREP

DET NOUN

PREP

the first on the list saw the man with the camera

V-PAST

Parsing NL (ambiguity)

ADJ

student

DET NOUN PP

NOUN PHRASE VERB PHRASE

SENTENCE

VERB

DET NOUN

NOUN PHRASE

NOUN PHR.

DET NOUN

PP

NOUN PHR.PREP

DET NOUN

PREP

the first on the list saw the man with the camera

V-PAST
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Information granulation
(resolving ambiguity)

ADJ

students

DET NOUN

NOUN PHRASE VERB PHRASE

SENTENCE

VERB

DET

POST-VERB

NOUN PHR.

the were operating the optical

BE

equipmentbest

V-ING

ADJ NOUN

V-PAST

Information granulation
(resolving ambiguity)

Lexicon information:
Camera – optical equipment

ADJ

student

DET NOUN PP

NOUN PHRASE VERB PHRASE

SENTENCE

VERB

DET NOUN

NOUN PHRASE

NOUN PHR.

DET NOUN

PP

N. PHR.PREP

DET NOUN

PREP

the first on the list saw the man with the camera

V-PAST

ADJ

student

DET NOUN PP

NOUN PHRASE VERB PHRASE

SENTENCE

VERB

DET NOUN

NOUN PHRASE

NOUN PHR.

DET NOUN

PP

NOUN PHR.PREP

DET NOUN

PREP

the first on the list saw the man with the camera

V-PAST
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Dynamic lexicon

fs(camera) = { ... , 0.9/camera, 0.7/equipment, 0.7/optical, 
0.5/student, 0.5/man, ...}

fs(tcamera) = { ... , 0.9/camera, 0.7/equipment, 0.7/optical, 
0.9/student, 0.5/man, ... , 0.9/the best students, 0.9/the optical 
equipment, 0.5/the man, .... }

fs(tcamera) = { ... , 0.9/camera, 0.7/equipment, 0.7/optical, 
0.9/student, 0.5/man, ... ,  0.9/the camera, 0.9/the best 
students, 0.9/the optical equipment, 0.5/the man, .... 0.9/the 
first student on the list, ...}

Conclusions

n NL processing cast as FS/FL 
information processing

n Examples confirm feasibility
n Further research needed to 

investigate methodology for building 
lexicon of fuzzy sets.


