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Collaborative processing

|
Distributed sources of data (databases)

No direct interaction between databases

Goal: reveal structure common to all databases
through a process of collaboration

Approach: explore possibilities of collaboration
through granular communication

Horizontal collaboration

Databases about clients at various institutions
Confidentiality of data: nodirect sharing of data

Sharing information granules (level of granularity)

(communication at the level of information granules)




‘ Horizontal collaboration

|
Databases about same N clients at various institutions
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Confidentiality : no direct sharing of data

‘ Vertical collaboration

Databases about various clients at several institutions
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Horizontal collaboration:

‘ Fuzzy C-Means
!

- Identify patterns by optimising
local objective functions in each data set
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Horizontal collaboration:
Fuzzy C-Means

I
- Coordinate partition - Q O j

matrices in data sets Q
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alivil / Communication and
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Horizontal collaboration:

‘ Computational details

Modified objective function

Qil=& & UilildZfil+ ali,ila & {u.fil- u il ds il

Optimization problem
Min Q[ii]

subject to.
il U

collaboration
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i=1 k=1

Horizontal collaboration:

‘ Computational details

Unconstrained optimisation of V with respect
of partition matrix and Lagrange multipliers
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Horizontal collaboration:

‘ Computational details
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Horizontal collaboration:

‘ Computational details
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Horizontal collaboration:

‘ Partition matrix
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Horizontal collaboration:
‘ Prototypes
v[ii]—A*[ii]+Cs[ii] A=L:Ilu.[--]u[u]
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Example: Boston housing data

I
14 features split into two groups (databases) A (ii=1)
and B (ii=2)

A =\ per capatn erime rate by town, nitne oxpdes concentration (parts per 10
milhond, popartion of aw |\'r-|u,'x'|||'-|\_-d units baalt priar to |50, l.'|¢|-__|'|I-.-|,1
distunces to five Bosten employment centers. pupil-teacher ratee by town,
% lower status of the population. median value of ownersceupicd homes
m S 10T s |

B | proportion af residentinl fard zoned For bols over 25,0040 =g tt,
rroporiion of non-retail bu=iness acres per town, Chardes River dummiv
varkle (equal to 1t tract boynds nver; O otherwise), averape number of
roeins per dwelling, index of accessibility do radial highwavs, full-value
property-tax rane opor SO0 100BE - 6302 where Bk s the

proportion of Blacks by town

‘ Example: Boston housing data

Scenarios of collaboration:
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‘ Boston housing data
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‘ Quantification of collaboration

*Changes of prototypes

*Changes of member ship grades (vis-a-vis situations
with no collabor ation)




J Quantification of collaboration(1)

*Changes of prototypes

price of real estate
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J Quantification of collaboration (2)

*Changes of member ship grades

|
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Interval State Estimation
In Systems Modelling

‘ State Estimation: definition

Identify a state uncertainty set X(.)

XMz, 2 =1{xe R g e Z(M. 2,2}

where Z(.) is a feasible measurements set

ZiM,z,zh=iz"e R™:3 <z £z ,il,..m!
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‘ State Estimation: definition

Using interval notation the measurement set is

ZM,z,z') = z]

and the state uncertainty setis

X([z])

‘ State Estimation: definition

The enclosure of the state uncertainty set is
defined by the uncertainty bounds on system
state variables

KX (2 =t{xe R":x < x <x',i=l..n|

where

% = min %, i=l..n X = max %,  i=l..n
X € X([z]) x = X([z])




State Estimation: definition

Relationship between sets

X([z]) state uncertainty
el set

X*([z]) enclosure of X(.)

Z([z]) measurement
uncertainty set

Z*([z]) image of X(.)
through g(.)

Monte Carlo method

The reference state estimates

e Monte Cardo confidence limit algorithm

Sclect a large number, & (to limit the somber of iterations) and set { = 4

]

2. SBeti=i-+r.
Select a sequence of m random numbers, &' ..., rq, and use these to construct o
randern measurement vector 2 from ZA[2]) as dhcated m (T

4. Calculate a state estimate, ¥ from 2. 1§ gix ) = Zi[z]k then use o update ol
Y Otherwise roject ¥ s infeasible.

50 IWi=&, poback to step 2. Otherwise stop.

X'={x e R":g(x')e Z([z]) forsomeie {l,.j}}=]...k

X = xS X(z])
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Linear Programming method

The application of LP requires linearisation of
the state uncertainty set X([z])

Using 1-st order expansion of g(x)

g(x) = g(xX )+ (x-x)
The linearised state uncertainty set is
X'([z]) = {xe R": g(X )+ ). (x-X) € Z([z]) }

X'([z]):= { xER":x=x +dx, 7 - g(%x)< Jdx < 25~ g(%))

Linear Programming method

The linearised state uncertainty set has, in general,
complex topology so that an ENCLOSURE of the set is
sought as

X = min X, i=1,...,n
X £ X'([z]}

|+ ; -

X = max x, 1=1,....n
x e X'([z])
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Linear Programming method

The task can be expressed as 2n linear programs

minimize dx;
subject todz” < J.k < dz”

maximize dv;
subject todz” < J.dx < dz”

Linear Programming method

e lll.l.lq,"r.'.l'J'II'.'.l:_[.'rI.'.l.'.ll.l.'..l.':_:' carfideice i .|.':_-_:-.n {1

I, Sclect an observable subset of W contaming s measurements. This 15 the
arvimimaal messurement et and = denoted e W Opder M with the elements of
M appearing first.

e

Oebe™ e (™ and T
3. Factorize J* and caloulate S0

! i h -l
4. For each vartable, i=1,..n. calculate a', the ™ row of ()

and carry out the
faxamization in (200 using a linear progommming method. The resultamt valus
of a'alg" s the 7 clement of &7 Sumilarly, carry ot the mmimization m (21,
1o obtain the ™ clement of dv.

5. Adddv and dh" 10 § 1o obtain de'” and de'”,

Re-order de” and de” according to the new ordering of M. Assemble "y,
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Linear Programming method

Example A<k +xn<]
< x+x<3
0.5< X <3

Linear Programming method

Examp|e o I LR R g VI L el | R
-1 1] |
" and S0 1]
I ||
-5 ] i, iy
Loy . and ST =S 0S
(1]

The cost function for i=1 al z"= 052" + 0.5z;"

(z") =land (z;") =1 (2" =1 and {z:"1"

] P =
The cost function for i=2 a .z =05z"+ {].}z;"|

(z")" =1 and (z,")" =3

itz -|'-.|||I.|Iz;'.' 25
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Linear Programming method

Example

Evaluating [x] - n'z" = [-0.5 0.5](1 |] =,

we obtain X '=Iu1 =[1]‘1¢] 5][-1 3] =2,
n=az =[D"|!]"|][I+t2~.] —'D“'-

x =alZ" = [0505][13] =2

%
1 % s
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Ellipsoid method

I
The linearised state uncertainty set is estimated

by ellipsoids that have progressively reduced
volume subject to problem constraints

Ellipsoid
E=(xe R": (xx")'P (xx) < 1.0}

The linearised measurement constraints

g )+ X STk <z -g(x)+J X
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Ellipsoid method

¥

¥ f
F -the g b bec b il bewpeeipliniess of the e tiain

E b updinied cllipsod]  am—

Note that the shrinking ellipsoid can imply increase of
bounds in some dimensions

Ellipsoid method

|
Using tt" constraint to update t-1t" ellipsoid

Y =x"1+pv, el )P L A (24)
Po=(1+p~pv MY +p g P (25)
Py =U+(p MY +pog )Py a' (@) P, (26)
g = (a)' Py a)) 27
v, = 0.5(7 42,)— (g(x™), + (Ldv), + (2 " (28)

The region Ft bounded by tt" constraint also contains
the state uncertainty set X'([z])




Ellipsoid method

Etlipyaide! confideroe i alporittm

1. Sets=0and Pp=cl.

2 Seti=i+1

Caleulate g, and v, frem equatiors {271 and (25).

4 Fumd py that minimizes the velume of the new ellipsoid by solving the following
quadratic equation s p,
ip-lhe .l - -+ v .+ e e T e =0

3. Calewlate #°,; from (2671

Lpidate the state variable \' , s per equpthion | 244

Lipdime P, equation (25}

L] It net ] constrnni= have been processed vet than repent From step 2

I the volwme of the ellipsoid has been reduced by less than a pre-specified ratie

than stop, otherwise reset the constramts counter, (=0, and repeat from step 2

Ellipsoid method

Example

_l<—X]+X2<1
l<xp+x <3
0.5< X <3

from the above we have
z=[-1105]" 2=113317  x'H0,0]

19



Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

7.26 5.09 L |—2.69 4 |2.69
= X = X =
509 7.26 -2.69 2.69

212000 v,=0.00

-

218 =021 ; |—0.62 5 [2:33
2,=24.70  v,=2.00 P= X= X =
-0.21 2,18 —0.62 2.33
248  —-0.18 . |=0.74 v |-2:41
g;=2.18  v3=0.89 Pi= X'= _ X =
—0.18 248 -0.30 2.44

Ellipsoid method

Processing the constraints in order 1, 2, 3 we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 1, 2, 3 we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 1, 2, 3 we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 1, 2, 3 we have
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Ellipsoid method

Processing the constraints in order 1, 2, 3 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

25=10.00

g,=15.44
g,=13.73

va=1.75

v 3:(}.69

Pj.:

sz

[12.33

0.00

0.00
312
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Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

- 53
[ Bt 2 s
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Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have
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Ellipsoid method

Processing the constraints in order 3, 2, 1 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have
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‘ Ellipsoid method

|
Processing the constraints in order 3, 2, 1 we have

Ellipsoid method

Processing the constraints in order 3, 2, 1 we have
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Sensitivity matrix method

The basis of the method is the observation that
for a minimal measurement set the linearised
uncertainty bounds can be calculated directly

However since we deal usually with the overdetermined
measurement sets we calculate the pseudo-inverse of
the Jacobean matrix — sensitivity matrix dx = ¢/'J y'/"az

The approximate linearised state uncertainty set is
X*([z])=1xe R": x=x +dx, dx=('J )/ dz. dze DZ([z])}
X'z & X[z))

Sensitivity matrix method

Semsitivity mateiv costfidence (el algo thm

| Seti =1

2 Factorize the motrix o0 (This can be done using an augmented  midniy
formulation so s to preserve the condition number of the matrix 2N

Y Seti=i+l|
4 Caleulaie W, ithe o rovw ol the semsitivily matns -:.n'l..l' |"..l'I I This can be done
efficiently I:|k|||,_1 o accound the sparssty of . and HsIng the wupme nied matrx
based factorizabion of siep 2|
Puix’ T =bd + 1, where dz {44' it = (0
1].!'1 [ fi P W AT
6.

| ‘-_'I.' 0o+ I. L whens | dz’ :{dzl’ ifb' >0.0

+ .
dz" otherwise

Wi= 7. go back 1o step 3, Chherase stop |
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Sensitivity matrix method

Example
S T -1
1<X|+X2<3 J: 1
05< %<3 |0 1]

The sensitivity matrix is

u.l.“_ljlz[—(r.i 0.5 u]

)
0.333 0333 0333

Sensitivity matrix method

Using interval arythmetic formalism we calculate bounds
on every state variable using corresponding rows of the
sensitivity matrix

[x,]= [b'].[dz] + [ %] .i=1,..n

[Z]={[-1. 1] [1.3] [0.5,3]

30



Sensitivity matrix method

|
[xi]=[b'].[z] =[-0.5,-0.5][-1, 1]+ [0.5, 0.5][1, 3] + [0, 0][0.5. 3]
= [-0.5,0.5] + [0.5, 1.5] + [0, 0] = [0, 2]
[ ]= [0 [2][0.333, 0.333][-1, 1]+[0.333, 0.333][1, 3]+{0.333, 0.333][0.5, 3]~
= [-0.333, 0.333] + [0.333, 1.0] + [0.167, 1.0] = [0.167, 2.333]
- , k'x“ .f’f #
R "\x i el e
LA 2333 NS
2 ————— e B g \"'-\_ : #
~ 1% e -f. ..,_l:-..,_. ....... i
05 = TSFTS 0167 -=Ea N,
_,-‘I"-.__‘ ' ., il _.,"rl"w_ L X
gl 0 2
Sensitivity matrix method
|

The over-estimate of the state uncertainty set is
due to the “inactive” constraints not being
disregarded but taken into consideration in the
sensitivity matrix calculation




‘ Sensitivity matrix method
|

The real-life example

Sensitivity matrix method

I
State uncertainty variability sets (MC and LP)

AXIML 2" )= e " s o=, x + = XML 2270 )

AX'(MI 2,20 = | e R™ " : So=ldy|, € +dx e X'IMI1, 2, 27) |

32



Sensitivity matrix method

State uncertainty variability sets (E and LP)
AXUML 7, e = S R i) vy v e XM 22"

AXUML 2.2 = | Sne R : Sl & ~dn e XAM2. 2. 2") |

Sensitivity matrix method

State uncertainty variability sets (SM and LP) evaluated
with additional meters

33



Conclusions

. Monte Carlo estimation — accurate but

computationally very expensive

. Linear Programming estimation — accurate and more
efficient than MC but still very demanding
computationally

. Ellipsoid estimation — very efficient computationally
but produces conservative bounds that also depend
on the order of processing of the constraints

. Sensitivity Matrix estimation — accuracy comparable
to LP and efficiency comparable to Ellipsoid method.
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Information Structuring in
Natural Language
Communication:
Syntactical Approach

Motivation

A new framework for Natural Language
processing

NL processing and Data Mining

NL processing and information
granulation

Stimulus for future research (validated
on some simple NL examples)

35



‘ Set representation of an NL

X — set of words;

P(X) — NL statements utilizing words X

G(X) — grammatically correct NL statements
A(X) — acceptably correct NL statements
S(X) — NL statements that are meaningful

‘ Set representation of an NL

Syntactic analysis
Statement is a member of A(X)

Semantic analysis

Statement is a member of S(X) (conveys a
specific information arising from the
purposeful combination of words into
sentences)

36



‘ Syntactic processing roots

Nativist view of cognition
Chomsky, Cartesian Linguistics (1965)

All NLs share certain universal structural
features

Children acquire command of NL
surprisingly fast regardless of the language

Justification of syntactical analysis of NL

‘ NL processing

Lexical acquisition

Naive solution: lexicon construction (inflexible,
error-prone, domain dependent)

Corpora: annotated language samples as a source

of information and statistics (step towards
resolving ambiguity and uncertainty)

From crisp (Homenda, 1991) to fuzzy relationships

(defined on noun-phrases) as a means of
capturing contextual information.
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‘ NL processing

Syntactical analysis

Problems with NL ‘compilation’
Need for the flexibility in application of the

rules of grammar

Baseline: sensible application of the
context free grammars

‘ NL processing

Syntactical analysis

Sentence

N

Noun

'

Student

Verb

!

operates

38



NL processing

Context free grammars

(CFG proposed here generates a language that
includes only a subset of English)

Tuplet G=(V, T, P, S) is CFG

V — finite set of variables

T — finite set of terminal symbols

S — beginning symbol of the grammar
P — finite set of productions (pairs)

‘ NL processing

Example
G = ({*Sentence”,“Noun”,“Verb"},
{student, operates},
{"Sentence” -> “Noun” “Verb”,
“Noun” -> student
“Verb” -> operates },
“Sentence” )
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‘ Parsing NL

Syntactical structuring

VERB PHRASE

NOUN PHRASE

[peT| [ADJ] INouN]
[v-pa

NOUN PHR|

the best students were operating the optical equipment

‘ Parsing NL (ambiguity)

SENTENCE|

NOUN PHRA VERB PHRASE

[DET|[ADI|NOUN| [PP] |VERB||NOUNPHRASE|

[PREP|[NOUN PHR| |DET||NOUN| [PREP| [N. PHR/]

]

the first student on the list saw the man with the camera
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Parsing NL (ambiguity)

SENTENCE

NOUN PHRA

|DET||ADJ||NOUN|| PP |VERB||NOUN PHRASE]| [PP]

|PREP||NOUN PHR| |DET||NOUN| [PREP| [N. PHR/

|| o

the first student on the list saw the man with the camera

Parsing NL (ambiguity)

NOUN PHRASE VERB PHRASE

[DET][ADI[INOUN]  [PP] [VERB] [NOUN PHRASH

[DETINOUN] [PP!

[PREP| [NOUN.PHR]

the first student on the list saw the man with the camera
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Information granulation
‘ (resolving ambiguity)

NOUN PHRASE VERB PHRASE

T N (Yo @E/VERB [EosT vErE)

[v-PasT] IIWNT]R\

beT] [AD] [NOUN|

the best[students|were operating[the optical equipment]

Information granulation
‘ (resolving ambiguity)

Lexicon information:

Camera — optical equipment

e firstjsudenfon the list saw the mar with felcaneal | i firs sudert or the list saw the mar with the camere
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Dynamic lexicon

f(camera) = { ... , 0.9/camera, 0.7/equipment, 0.7/optical,
0.5/student, 0.5/man, ...}

fg(tcamera) ={ ..., 0.9/camera, 0.7/equipment, 0.7/optical,
0.9/student, 0.5/man, ... , 0.9/the best students, 0.9/the optical
equipment, 0.5/the man, .... }

fg(tcamera) = { ... , 0.9/camera, 0.7/equipment, 0.7/optical,
0.9/student, 0.5/man, ... , 0.9/the camera, 0.9/the best

students, 0.9/the optical equipment, 0.5/the man, .... 0.9/the
first student on thelligt, ...}

Conclusions

NL processing cast as FS/FL
information processing
Examples confirm feasibility

Further research needed to

investigate methodology for building
lexicon of fuzzy sets.
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