Software Evolution and the
Future for Flexible Software

Keilth Bennett
University: off Durham

Pennine Researchi Group
(UMIST; Keele, Leeds, Durham)

28/06/2004 Erasmus: University of Bari 2004

OCEAN/SEA

28/06/2004

Pennine = software engineering researchers from

UMIST, Keele, Leeds and Durham.

Erasmus: University of Bari 2004

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Contents \What IS evelution?

- It 1| activities performed on seftware: after first
E Curre.nt =YD SOTv A delivery (IEEE): /el moaliication or a software.
2. Meeting| the challenge o huilding proguct arter: delivery. to conrect 1aults, to
: ITIPIOVE PErioiiianice or GLier: atlioutes, or o
SOftwalre systemswhich are easy o Adapr e\ proauct (o) A moaliiea environmient.
Change. (Old fashioned/— reuse, components eic)

(the IBHIS project represents our Evolution and mzintsrasnce: . A
¢ o /maiptenance means general post-delivery activities
eXpe”mentaI SyStem) o evolutionitoe refer tera particular phase in'the staged.
m?de/ where substantial changes are made to the
software

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Empirical data of software
maintenance

Sofitware maintenance: represents, 67- 801 % of seftware
costs

Survey: by Lientz andl Swanson
u |ate 1970s, very widely cited
u maintenance activities divided inte four classes:
Adaptive — changes;in' the soeftware envirenment
Perfective — new: User reguirements
Cornrective — fixing| ermors (21%; of all changes)
Preventiver= prevent problemsin the future:

u Incorporation oft mew User requirenments;is the core: preblem;for
software evolution and maintenance (79%, of all changes)

28/06/2004 Erasmus: University of Bari 2004 28/06/2004

Challenge of software
maintenance/evolution

Glraphs

incorporation; of new: user requirements guickly and iz Burd
reliably;

IT changes can be anticipated at design time
= they can e built in by a parameterization, encapsulations, ete. The charts are Copyright of Liz Burd.

a the preblem selved
However 40iyears of hard experience confirms:

u Imany changes cannot be even corce/ved. ofi by the eriginal
designers

a Inability: terchange: soefitware: guickly and'reliably: means; that
PUSinESS oppoertunities are: lost

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Increase in interface complexity.

28/06/2004 Erasmus: University of Bari 2004

e T e e e T S e |

Filn G fpbiows firs Byt s

[

[Beeaprtitor v omgation |

¥

== o Fele anorach] — [i amselen]

fes TR
T

= o
[ezeine wea]

v
o
]

28/06/2004:

Erasmus: University of Bari 2004

28/06/2004 Erasmus: University of Bari 2004

28/06/2004

Erasmus: University of Bari 2004

Harrier examples

Delocalization of change

The architecture does not suppoert contemplated change,
pecause the concepts of the application domain relevant
to the change are delocalized! ini the code eg Harrier

the selution; may: be tos restructure first and to: localize
the concept in one location;, and then terchange it

Behavior preserving transiormations donot change the
behavior of the program, but change the architecture.

In the case ofi delocalized! changes, an advisable stiategy.
could be:

n to transformi the architecture so that the change will'be: localized
m then to make the change itself

28/06/2004 Erasmus: University of Bari 2004

Reverse engineering

Jiechnical problems: equivalence off old
and new: (do we want exact eguivalence,
or modified requirements) e.g. CICS

Business: we need to invest large amounts
off capital tor achieve unguantifialsle gains
e.g. In maintaimalility: (1) and new: stafing
problems

Almost no interest from outsourcers

28/06/2004 Erasmus: University of Bari 2004

Seome fundamental Issues

Maintainability’ eg extreme prog (pProcess) or or
OO (product)

CS thinksi they have selved it. (thierry) ne
scientifici evidence

(Celiman, feedback systems)

Modern| seftware not green; fields — reuse,
COMpoOREnts, INtegration

T0o0) slow: & process
We know: very little' about evelution, ne theary

28/06/2004 Erasmus: University of Bari 2004

ISsue: Maintainanility

Software will change: in waysiincenceivable to
orginal designers (VME)

\We do not really: understand this;, and knew.
oW te quantify it

It may net be artechnical matter alone

“Research by advocacy” and “leave to the
reader” a real proeblemin CS research (example
2.\Weeks ago)

One poor evolution: activity cam ruin it

28/06/2004 Erasmus: University of Bari 2004

Emergent erganizations

time-to-market for software has; bhecome the top
prionty for many: business applications
u Alfinance hiouser may/ create’ a new/ financial products it must
be implemented andilaunchediwithin 24 hours; and then has
a liferef only: twer more days.
A’ greups ofi senier software engineering academics
and industrialists’ in. UK met regularly’ tor explere’ and
frame visions of the: future of software

n levell ofi abstractions off software engineerinal will-contintie to
rise.

n the focus of reseanchr will- change from technoelegy: to: the
interface off therseftware withr business

n sofitware will- move: fromi preduct eriented view! tor service

oriented view.
28/06/2004 Erasmus: University of Bari 2004

ISsuUe: Emergent systems

Driven by business need,, so “co-evelution”
IS a gooed term.

No Initial spec, design;, code, test,
maintan

More like: (fior user, fior develeper) join,
participate, disengage.
Lehman E type soltware

28/06/2004 Erasmus: University of Bari 2004

Issue: observations

Only.one seurce ofi Infie — the seurce code
Ci aSSERtions

Doecumentation often wiite once: only,
Maimntainers willfeften clene and modify
(e.g. ERNIE, Harrier)

Evelution while systemis running (medermn
distributed systems)

Testing needs evolving| tooe.

28/06/2004 Erasmus: University of Bari 2004

ISsue: understanding evolution

Lelhmani hias' derved 8 laws ofi evelution
(example'law: 1). Done: by elserving an
existing process; and measurng

Now: triying termedel by a feedback system

Vayle: a pro-active pProcess medel
(mamtenance Which reguires degradation
off structure te e fixed) will- produce other
results.

28/06/2004 Erasmus: University of Bari 2004

28/06/2004

Grand Challenge

Right first time, every: time.

Tihe problem with' evelution IS et that It IS
knewn te be a preblem; but what the
solutien space leeks like

28/06/2004 Erasmus: University of Bari 2004

Elexible software

IS there a solution?

28/06/2004 Erasmus: University of Bari 2004

Problem

Wihat Is thereal proeklem?

It ISt simply: a new: way: of representing
reqguirements; andl then; deing a delta on
this

So let’s look at the problem infmore detail

28/06/2004 Erasmus: University of Bari 2004

Preblem

How dorwe build and' sustain; seftware
whichiisthighly: maintainakle and flexible?

And which can be revalidated/reverified
easily?

And preperties like E1r, dependalbility: (and

non-functienal preps) not damaged?

28/06/2004 Erasmus: University of Bari 2004

Challenge

Software needs to evolve; often rapidly, to
meet and reflect business needs. In
almost alll cases the evelution| IS net:
predictable at design time.

A system typically’ consists; of various
COMPORENiS oF Various; ages, technologies
etc.

Example: health senvices, Emie, Harrer

28/06/2004 Erasmus: University of Bari 2004

It seems; Impertant..

IS software A more maintainable than
software B2

Ii-we change software A, does it become
lESS mamtainable?

We'd like ter measure! it

28/06/2004 Erasmus: University of Bari 2004

Metrics wouldl help with lifecycle
COSt estimation

Vendoer A produces software WhICh IS Very
Inexpensive te buy, yet IS so
Unmaimtamakkle that enly the vendor can
change i

\/endor Bl produces expensive seftware
whichris easy for allf'to, maintain

28/06/2004 Erasmus: University of Bari 2004

System and emergence

System

a Complexity in algerithms andi real time

= Boundaries off concern tend te be fixed

a Careful cautious process ofi evolution eg| CICS
Emergent:

s Change Is continueus; Not discrete

u \/ery rapid rate of chiange, set by business

n Eg e-businesses (NHS?211)

28/06/2004 Erasmus: University of Bari 2004

Emergence

A hard challenge is raised by “emergent”
applications and erganisatens

Systems Demain
= \Well defined boundaries and requirements
Business Domain

» Emergent Organisations

“Organisations in'a state off continual process
change, never arriving, always in transition:

D. Truex, R.Baskeville and H.Klein, “Growing Systems in Emergent
Organizations”, Comm.ACM, Vol.42, No.8, August 1999

28/06/2004 Erasmus: University of Bari 2004

Changing Nature of Business

40% o Ferttne 500 companies in 1979
are no loneer corpoerate entities

30% o firms under 10 employees
generate 70% of EU turnover

Cempetitiveness! through time: tel market is
majoer driver

28/06/2004 Erasmus: University of Bari 2004

Answer Analogy.

Cities;and buildings evolve in a way, that I1s
incencevakle tortheir eriginal inhalkitants e.g.
Remans

IS Durham “more evoelvable” than Bari?

Cities tend to evelve imcrementally, reacting to
shoert term goealsi and those in pewer, and
making| use of existing structures.

Building Pempeli‘alongside: Vesuvius |ess ahvious
afiter; the eruption off AD79

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Obsenvations Typical preblem

Mostly we: have “research by advocacy”, which A simple highly: lecalised reguirement
assumes, all'but-one factor (typically change reguiresia substantial and highly;

regulrernents) remmsling gonsis, £.q. OO, distributed set of changes threughout the
extieme prodramming, WITHOUT' evidence :
soltware (e.g. Harrier)

Software evolves — serdees theory, tools,
Precess; technelogy, environments, people,
expectations, legal framewaork, trust....

[How:buildings learni— S Brand
ISBNO753800500]

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

InaustRy Conclusions

Industry’ seems; unwilling ter pay. for Werdon't understand flexible seftware
pEenefits Whichiare not guantifiaile \We cannot measure It;
(mamtamakbility, retest costs): highi coest Pragmatically, addressed! by employing
for Intangible benefit. excellent (butlew: status)) stafi:
Reverse engineering, ether than seme

SOrts off code! restructuring, SEems

preblematic.

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Pause PERNINe approach

\We understand the preklem demain We started witha User: study. i cognate

But what! is| the solution? disciplines: (ref. CACMIpaper)
Users do not like evelution (theughi it Is no

A Grandl Challenge: “Right first time: every USEMIBVINONESIEARSHAVAIAIES)

time” Eundamentally they doe net like cost: of
ownershp: They want terhave the benefit
Off U/s/rg seftware Without Its, Cost.

P.Brereton, D.Budgen, K.Bennett, M.Munro, P.Layzell, L.Macaulay, D.Griffiths and
C.Stannett, “The Future of Software: Defining the Research Agenda”, Comm. ACM,

Vol.42, No.12, December 1999
28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004 44

Basic idea

\We have a marketplace ofi software
SENVICEs

When we need a better/faster/cheaper
Senvice, we substitute the old service by a
new one then and there (on the fly)

NG magic selutiens (selif evelving,
autenemic etc.)

28/06/2004 Erasmus: University of Bari 2004

ldea for evoelution

Get the granularity: off change rght
(currently tied up with: MS marketing
strategy)

Users use senvices. They compese wWhat
they want tedo eut of current Services, at
the'instant of need!

Then execute the composition
Then (like a rental car) disengage.

28/06/2004 Erasmus: University of Bari 2004

A service

A business definition: something that I1s
used, net owned (Ciwel services)

28/06/2004 Erasmus: University of Bari 2004

Demand! led

Considere.g. WORD. Censtantly’ changing,
I Ways not required by most Users

Users become: very hestile

Off course; this isi VIS business model —
Updating te sustain revenue

This Is supply side; or vendoer led change

28/06/2004 Erasmus: University of Bari 2004

Service**

The user employs: the best/most
recent/cheapest/moest dependablersenvices

Wheni use complete, then disengage

28/06/2004 Erasmus: University of Bari 2004

IHypethesis

I Saas; software: functienality 1s delivered
as a Ssenvice

Each time functionality’ Is required, Service
elements are identiied, terms and
conditiens are negotiated, executed and
then “disengagedr” — s there s ne further
obligation to that particularselutien

28/06/2004 Erasmus: University of Bari 2004

Software as a Service

A user (human o) proegram) dees net own
software — they rent it

At the poeint of need! they compose the
system they need to undertake a task
(Ulura’ later hinding)

They execute this
And then disengage

28/06/2004 Erasmus: University of Bari 2004

IHow: might evelution: he addressed?

The available senvices will evelve ter meet
User needs. lifservice proeviders evelve
SENVICES| 10 meet needs; they are
rewarded; 1ii net they are punished!

Jihat's the property. ofi a marketplace

We are exploring this in the healthi service
domaini (IBHIS)

Cifi evelution of a city.

28/06/2004 Erasmus: University of Bari 2004

Example: payroll*=* IS this a commodity: market?

Thisiweek: paper payslips NO, net necessarily. Many:CS people think

Next week: uses aniemaill service off It like thiS, and see the matChing
problem as core. Essentially’a pay-per-
view: model. See public UDDI sites for
preblems with WSDL and
hiutp://maviw. uddicential.com/

In business there are many: ether models
eg Kaizen, preferred supplier.

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

IS the compoesition hara? \What are the hard proklems?

Compositions may. e soldias services \We assume that'werhave a reliablerdistributed

\We donit see this otherwise as autematic INfresirlciurg, Bcross NeteruyeneoUs
: \ auienemMoUs erganisations, suchias that
(le magic)

provided by WS or Grid

A ratner opern probl_em for usiis the The hard issues then address business related
process (links; te’ Brian \Warheys" group) problems like tenms and conditions, negetiation
protoecols, legal framewaorks; trust, dependalbility

And, 1n; particular, security.
Ultra late binding of T & C isinteresting.

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

28/06/2004:

Erasmus: University of Bari 2004

Summany.

Our prepesal sees evelution only’ partly as
a technical issue (Ultra later hinding)

The rest Is based on “socio-technical
[Ssues” aka people and markets

e
\We

28/06/2004:

Seek an evidence-based! evaluation
are developing fermal moedels

Erasmus: University of Bari 2004

IBHIS Overview

Architecture: Operational

Py RN

28/06/2004

Erasmus: University of Bari 2004

Access

Learning alkout Weli Services

\/ersion 1: static anchitecture, nor UDDI
Setup By administrator, completed
december 2003

Version 2: dynamic binding, using WSDL
and UDDBI

28/06/2004 Erasmus: University of Bari 2004

Web services 2

In V1 we used a global schema as our
ontology. We need demain entolegies (eg
MEDINEO)

WSDL has venry limited suppert for terms
and coenditions;, fier negotiation

SEecurity, prvacy: remain preblematic. \We
have used RBAC

Perfiermance - needs detailed study:

28/06/2004 Erasmus: University of Bari 2004

Web services 1

We used RPC, bhut tee static and
unscaleable (teer many: proxies). Needs
document style

\Wehsphere and its wizards werkedwell

UDDI shiews many limitatiens for
describing reseurces, finding, binding.

28/06/2004 Erasmus: University of Bari 2004

Conclusions

Werhave presented a demand led possikle
solution; ter seftware evolution

Eunctienally, the hasic hypoethesis Seems
te work (version 1)

In version 2, more realistic experiments of
evoelution (muchrmore dynamic testhed)
will'berundertaken

Ourr work uses, ws as infrastructure

28/06/2004 Erasmus: University of Bari 2004

Steve Schach’s results

At Vanderbilt University, Texas

Three unexpected results with, open
source software

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

1. Who finds errors? Results 1

Periphery

Open source software tends, te; iave many. Temcat Gneme and Tormat 4 28.3
peripheral readers: (findi fixes; sUggest repairs) mozilla
and a fiew! core: peoplerwher can modify the

software

The tenet ofi the open seurce movement Is:
many. 6s pProducts; are so successiull hecause
vast numhers, of peeple on the periphery: study,
the code, find problems, suggest fixes. Mozilla

“Given enough eyeballs, all bugs: are shallow’

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Conclusions 1 Prolklem 2 Coupling

Most bugs are found and fixed by core Schach and his group studied! coupling
members threughr gleball varialbles;in 365 Versions of

Tihe large number of peripheral eyeballs LINUX (M LOC each)
have a small efifect

Steve’s current werk Is suggesting that
most enhancements come firom the core
team) too.

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Results 2 Conclusions 2

Tthe number: off couplings through' glehals Tthese would indicate: that LINWX IS
rises exponentially with Version numier. BECOMING Unmaintainalle

The LOC grows linearly withj version

numboer. (0lobal variable instances in kernell =
1022; outside kernel = 14688)

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Problem 3 Lientz and Swansen Result 3

Summary: ot results FOr epen seurnce systems studied (GCC,

Questionable methods: (survey based), not LINUX kernel, a RT system), =409 IS
actual metrics, 1 CMM level 1 COrrective maintenance.
Organisations)

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Conclusions 3 Overall

Schach argues; that Lintz & Swansen are Schiachfs fascinating resulis; shew: the
WIreng fer Gpen source value' off empirical work

KHB: IF'd ask i this were not what Lehamn OpEN SOUrCE IS Worthy: efi mere
nas heen saying for 25 years. 1ihe epen Investigation

source softwareris all S-type. L & S

addressedi applications whichrare lasically

E-type.

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

The lifecycle What de we Know?

Evelution cests; fer successiul seitware Typesi of seftware: Lehman's E, Stand P

What are the actiVities/types? types.
Programi comprehension Leliman’s & [awsie. ol Structural decay.

Re-validation e.g. Harrier

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Eramework Evelution

Rajlich and Bennett firamework NOT simply “initiall development™ and! then

Bennett K. H. andlRajlich V. T. A staged “maintenance”
moaderior e software iiecyc/er IEEE

Computer, vol. 33, ne. 7, pp. 66 —71, July

2000, ISSN'0018-9162.

Analysis off empirical resulis

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Additienal empiricall data

Cusumanes and: Selby: reported! that reguirements; during
each iteration may: change by 30% or more, as: a direct
result of the team learning process during the iteration

Lehner described yearly vanations In; the freguency: of
the chianges of a leng lived system

m freguency peaks, then declines

u Identified different phases

Pigoski: similar data

facts:
u nability torpredict changes
m several different stages, not a uniferm “maintenance”

28/06/2004 Erasmus: University of Bari 2004

Initial develepment™

first version, ofi the software system is developed
u may be lacking seme features
u already’ possesses the architecture. thiat wWillFpersist theught the
rest ofi the life of the program

in one documentediinstance, we studied a program that underwvent
substantial chamnges during itsi 20! years ofi existence, but it still
POSSesses) therarchitecture of the eriginaliiirst version:

programming team: acquires the Anowleage of

u application demain, USEr requirements, reler of therapplication: in
the business: process, selutions: and algerithms; data formats,
strengths, and weaknesses of the program’ architecture,
operating envirenment, etc.

m crucial prerequisite fior the subsequent phase ol evo/lution:

28/06/2004 Erasmus: University of Bari 2004

Staged model of
seftware lifecycle

28/06/2004 Erasmus: University of Bari 2004

Research challenge™

T0 buildrevelvable seftware
assist the next (evelution) stage, not subsequent stages

‘design for' change” should e predominantly aimed! at
strategic evolution, net code: level servicing

in the evolvable architecture, ‘the cost of making the
change Is proportional to the size ofi the change, not to
the size of the overall software system’

evolvable seftware can handle unanticipated changes

28/06/2004 Erasmus: University of Bari 2004

Evoelution™ Code decay™

goals There is a positive feedback between the loss of

= to adapt the application to the ever-changing user and operating sofitware: architecture ceherence, and the lossk of the
environment software knowledge

= to correct the faults inithe application = less coherent architecture requires, more extensive knowledge in

u 10 respond to both developerand user learming order to evolve it

inevitability’ of evolution [Lehman] u [fi the knowledgernecessany ol evolution is lost, therchanges in

i | : the software willllead te) a faster deterioration; ofi the; anchitecture
business setting| of evolution

user demand is strong
the erganization! Is;supportive .
el T O ivestment & Bxcelert Research challenge: eliminate or slew’ code decay.

both seftware anchitecture and software team) knewledge make

evolution possible
28/06/2004 Erasmus: University of Bari 2004 85 28/06/2004 Erasmus: University of Bari 2004

Example ofiloss of knowledge:
m |oss of key personnel

Servicing™

Research ISsues in servicing™
the programiis no lenger evolvable

changes are limited to patches and wrappers
u they are less costly

u they further deteriorate the architecture.

Sen_lor designers and architects do not need te be Regredfion teting

available Concept Identification, location; andl representation.
Tools and processes are very: different from evolution Automated| toollfor code improvement

A typical engineer willhe assigned only part ofi the Documentationl management
software: tor support Delivery of senvice patches

= will“have partial knowledges off thersystem. Upgrading| software without the-need to haltit:
The process is stable, well understood and mature. Progre healtn chieciers

n it is well'suited to process measurement and improvement

Making| the: change without unexpected additional effects
Program! comprehension
Impact analysis.andiripplereffect management:

28/06/2004 Erasmus: University of Bari 2004 28/06/2004 Erasmus: University of Bari 2004

Reversal from servicing to
evolution™

worthy: research goal
I’ practice:
s Veny hand, Very: rare
net simply a techinical problem
u the kKrow/eageiel the seftware team must alse be addressed

for all practical reasons, the transition; frem evoelution: to
SErvicing Is irreversible

28/06/2004 Erasmus: University of Bari 2004

Versioned staged
model>

Evolution Version . . .

28/06/2004 Erasmus: University of Bari 2004

Phase-out and clese down stages™

phase-out:

a NO More senvicingl is; being undertaken, but the system still
may beln production

u the users must work areund knownideficiencies

close-down
u the seitware use isidiscennected
m the users ane directed towards a replacement.

business issues:
u Can any/ ef the software be re-used?

m exit strategy’ is needed.
Once an erganization commitsitora system), changing toranether
IS expensive, technically difficult, and time consuming:
Do) datar have to be preserved?

28/06/2004 Erasmus: University of Bari 2004

Software change>

basici operation of both seftware evelution; and: software
SENVICing

change mini-cycle consists off the fellewing phases:
Reguest for change

Planning phase

Program| comprehension

Change impact analysis

Change implementation

Restructuring for change

Chiange propagation

Verification and validation

Re-doecumentation

28/06/2004 Erasmus: University of Bari 2004

Software change>

Program comprehension IS a prereguisite of any change

u [t'has beenrepoerted that this phase consumes more thanhalf of

allfmaintenance time
Change impact analysis assesses the extent of the

change, I.e. the components that will' be impacted by the

change
n it indicates: how: costly’ the change is going te he
Change propagation
u change may/ consist off several steps, eachivisiting one specific
software compenent

n (fithe visited component: is modified;, it may: no lenger fit withi the

rest
28/06@0GHeighboring comperents ieEneedatcdse changed

Redocumentation®™

change is net complete witheut the update of the' program
documentation

i~ the documentation of the: programiisimissing o iIncomplete;
the endlofi the minieyclenis the epportunity, to recendithe
comprehension acqguirediduring the change

program comprehensiontis a veny valuablercommodity (more
than 50% el reseurces| ofi sofitware. maintenance)

I current practice, that value:is thrownr away When the
programmer completes; the changeranditurmns his/her attention
Lo new: things

in order ter avoid that'less; incremental and eppoestunistic re=
documentations effort isi called fior. After a time, substantial
documentation’ cani be accumulated

28/06/2004 Erasmus: University of Bari 2004

93

Delocalization of change™

The architecture dees not support contemplated change,
ecause the concepts ofi the application domain relevant
to the change are delocalized! ini the code

the solution Is to) restructure first and to localize the
concept 1 one loecation; and then te change it

behavior presenving transformations de net change the
pehavior of the program, but change the architecture.

In the case of delecalized chamnges, an advisable strategy.
is:

m to transformi the architecture so that the change will' be: localized
m then to make the change itself:

28/06/2004 Erasmus: University of Bari 2004

SuUmmeary.

Underpinning the: fieldlare tweviews:

Reactive: We: cannot predict new,
reguirements; new technelegy, new.
markets; New: Processes, so evelution
must always' react ter events

Prodctive: Evelution;cant be planned in
advance Processes; tools, products)

28/06/2004 Erasmus: University of Bari 2004

Solutions to evoelution

Heavyweight processes e.g. CICS and
aveid ad-hec

Gooed stafif
Heavy/ stress on revalidation
Wiiap legacy components

Then thy te Improve: each| compenent of
such heavyweight processes.

28/06/2004 Erasmus: University of Bari 2004

Reversal from servicing to
evolution

werthy: research goal

In practice:

u very haxd), very rare

not simply’a technical problem

u the krowieage of thersefitware team must alsorberaddressed
for all practical reasons, the transition; frem evolution: te
Servicing Is irreversible

28/06/2004 Erasmus: University of Bari 2004

Reverse engineering

Redesigning all’ er part of a software
System ter impreve! its guality: (Crrkovsky)

Code iImprevement (Within ene: stage of
the staged lifiecycle) may: be viable

28/06/2004 Erasmus: University of Bari 2004

