
28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 11

Software Evolution and the Software Evolution and the
Future for Flexible SoftwareFuture for Flexible Software

Keith BennettKeith Bennett
University of DurhamUniversity of Durham

Pennine Research GroupPennine Research Group
(UMIST, (UMIST, KeeleKeele, Leeds, Durham), Leeds, Durham)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 22

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 33

DURHAM U

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 44

www.service-oriented.com

keith.bennett@durham.ac.uk

Pennine = software engineering researchers from
UMIST, Keele, Leeds and Durham.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 55 28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 66

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 77

ContentsContents

1. Current evolution SOTA1. Current evolution SOTA
2. Meeting the challenge of building 2. Meeting the challenge of building
software systems which are easy to software systems which are easy to
change.change.
(the IBHIS project represents our (the IBHIS project represents our
experimental system)experimental system)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 88

What is evolution?What is evolution?

It is activities performed on software after first It is activities performed on software after first
delivery (IEEE):delivery (IEEE):The modification of a software The modification of a software
product product after deliveryafter delivery to correct faults, to to correct faults, to
improve performance or other attributes, or to improve performance or other attributes, or to
adapt the product to a modified environment.adapt the product to a modified environment.
(Old fashioned (Old fashioned –– reuse, components etc)reuse, components etc)

Evolution and maintenance:Evolution and maintenance:
oo maintenancemaintenance means general postmeans general post--delivery activitiesdelivery activities
oo evolutionevolution to refer to a particular phase in the to refer to a particular phase in the staged staged

modelmodel where substantial changes are made to the where substantial changes are made to the
softwaresoftware

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 99

Empirical data of software Empirical data of software
maintenancemaintenance

Software maintenance represents 67Software maintenance represents 67-- 80 % of software 80 % of software
costscosts
Survey by Survey by LientzLientz and Swanson and Swanson

late 1970s, very widely cited late 1970s, very widely cited
maintenance activities divided into four classes:maintenance activities divided into four classes:

Adaptive Adaptive –– changes in the software environmentchanges in the software environment
Perfective Perfective –– new user requirementsnew user requirements
Corrective Corrective –– fixing errors (21% of all changes)fixing errors (21% of all changes)
Preventive Preventive –– prevent problems in the future.prevent problems in the future.

incorporation of incorporation of new user requirementsnew user requirements is theis the core problemcore problem for for
software evolution and maintenance (79% of all changes)software evolution and maintenance (79% of all changes)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1010

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1111

Challenge of software Challenge of software
maintenance/evolutionmaintenance/evolution

incorporation of new user requirements quickly and incorporation of new user requirements quickly and
reliablyreliably
IfIf changes can be anticipated at design timechanges can be anticipated at design time

they can be built in by a parameterization, encapsulations, etc.they can be built in by a parameterization, encapsulations, etc.
the problem solved the problem solved

HoweverHowever 40 years of hard experience confirms:40 years of hard experience confirms:
many changes cannot be even many changes cannot be even conceivedconceived of by the original of by the original
designers designers
inability to change software quickly and reliably means that inability to change software quickly and reliably means that
business opportunities are lostbusiness opportunities are lost

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1212

GraphsGraphs

Liz Liz BurdBurd
www.dur.ac.uk/liz.burd/evolution.pptwww.dur.ac.uk/liz.burd/evolution.ppt
The charts are copyright of Liz The charts are copyright of Liz BurdBurd..

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1313

Increase in interface complexityIncrease in interface complexity

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1414

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1515 28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1616

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1717

Harrier examplesHarrier examples

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1818

Reverse engineeringReverse engineering

Technical problems: equivalence of old Technical problems: equivalence of old
and new (do we want exact equivalence, and new (do we want exact equivalence,
or modified requirements) e.g. CICSor modified requirements) e.g. CICS
Business: we need to invest large amounts Business: we need to invest large amounts
of capital to achieve unquantifiable gains of capital to achieve unquantifiable gains
e.g. in maintainability (!!) and new staffing e.g. in maintainability (!!) and new staffing
problemsproblems
Almost no interest from outsourcersAlmost no interest from outsourcers

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 1919

Delocalization of changeDelocalization of change

The architecture does not support contemplated change, The architecture does not support contemplated change,
because the concepts of the application domain relevant because the concepts of the application domain relevant
to the change are delocalized in the code to the change are delocalized in the code egeg HarrierHarrier
the solution may be to restructure first and to localize the solution may be to restructure first and to localize
the concept in one location, and then to change itthe concept in one location, and then to change it
behavior preserving transformations do not change the behavior preserving transformations do not change the
behavior of the program, but change the architecture. behavior of the program, but change the architecture.
In the case of delocalized changes, an advisable strategy In the case of delocalized changes, an advisable strategy
could be: could be:

to transform the architecture so that the change will be localizto transform the architecture so that the change will be localizeded
then to make the change itself then to make the change itself

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2020

Some fundamental issuesSome fundamental issues

Maintainability Maintainability egeg extreme extreme progprog (process) or or (process) or or
OO (product)OO (product)
CS thinks they have solved it. (CS thinks they have solved it. (thierrythierry) no) no
scientific evidencescientific evidence
(Lehman, feedback systems)(Lehman, feedback systems)
Modern software not green fields Modern software not green fields –– reuse, reuse,
components, integrationcomponents, integration
Too slow a processToo slow a process
We know very little about evolution, no theoryWe know very little about evolution, no theory

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2121

Issue: MaintainabilityIssue: Maintainability

Software will change in ways inconceivable to Software will change in ways inconceivable to
original designers (VME)original designers (VME)
We do not really understand this, and know We do not really understand this, and know
how to quantify ithow to quantify it
It may not be a technical matter aloneIt may not be a technical matter alone
“Research by advocacy” and “leave to the “Research by advocacy” and “leave to the
reader” a real problem in CS research (example reader” a real problem in CS research (example
2 weeks ago)2 weeks ago)
One poor evolution activity can ruin itOne poor evolution activity can ruin it

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2222

Issue: Emergent systemsIssue: Emergent systems

Driven by business need, so “coDriven by business need, so “co--evolution” evolution”
is a good term.is a good term.
No initial spec, design, code, test, No initial spec, design, code, test,
maintainmaintain
More like (for user, for developer) join, More like (for user, for developer) join,
participate, disengage.participate, disengage.
Lehman E type softwareLehman E type software

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2323

Emergent organizationsEmergent organizations

timetime--toto--market for software has become the top market for software has become the top
priority for many business applicationspriority for many business applications

A finance house may create a new financial product; it must A finance house may create a new financial product; it must
be implemented and launched within 24 hours; and then has be implemented and launched within 24 hours; and then has
a life of only two more days. a life of only two more days.

A group of senior software engineering academics A group of senior software engineering academics
and industrialists in UK met regularly to explore and and industrialists in UK met regularly to explore and
frame visions of the future of software frame visions of the future of software

level of abstraction of software engineering will continue to level of abstraction of software engineering will continue to
rise. rise.
the focus of research will change from technology to the the focus of research will change from technology to the
interface of the software with businessinterface of the software with business
software will move from product oriented view to service software will move from product oriented view to service
oriented vieworiented view

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2424

Issue: observationsIssue: observations

Only one source of info Only one source of info –– the source code the source code
cfcf assertionsassertions
Documentation often write once onlyDocumentation often write once only
Maintainers will often clone and modifyMaintainers will often clone and modify
(e.g. ERNIE, Harrier)(e.g. ERNIE, Harrier)
Evolution while system is running (modern Evolution while system is running (modern
distributed systems)distributed systems)
Testing needs evolving too.Testing needs evolving too.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2525

Issue: understanding evolutionIssue: understanding evolution

Lehman has derived 8 laws of evolution Lehman has derived 8 laws of evolution
(example law 1). Done by observing an (example law 1). Done by observing an
existing process and measuringexisting process and measuring
Now trying to model by a feedback systemNow trying to model by a feedback system
Maybe a Maybe a propro--activeactive process model process model
(maintenance which requires degradation (maintenance which requires degradation
of structure to be fixed) will produce other of structure to be fixed) will produce other
results.results.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2626

Grand ChallengeGrand Challenge

Right first time, every time.Right first time, every time.
The problem with evolution is not that it is The problem with evolution is not that it is
known to be a problem, but what the known to be a problem, but what the
solution space looks likesolution space looks like

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2727 28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2828

Flexible softwareFlexible software

Is there a solution?Is there a solution?

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 2929

ProblemProblem

What is the real problem?What is the real problem?

It isn’t simply a new way of representing It isn’t simply a new way of representing
requirements and then doing a delta on requirements and then doing a delta on
thisthis

So let’s look at the problem in more detailSo let’s look at the problem in more detail

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3030

ChallengeChallenge

Software needs to evolve, often rapidly, to Software needs to evolve, often rapidly, to
meet and reflect business needs. In meet and reflect business needs. In
almost all cases the evolution is not almost all cases the evolution is not
predictable at design time.predictable at design time.
A system typically consists of various A system typically consists of various
components of various ages, technologies components of various ages, technologies
etc.etc.
Example: health services, Ernie, HarrierExample: health services, Ernie, Harrier

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3131

ProblemProblem

How do we build and sustain software How do we build and sustain software
which is highly maintainable and flexible?which is highly maintainable and flexible?
And which can be revalidated/And which can be revalidated/reverifiedreverified
easily?easily?
And properties like FT, dependability (and And properties like FT, dependability (and
nonnon--functional props) not damaged?functional props) not damaged?

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3232

It seems important..It seems important..

Is software A more maintainable than Is software A more maintainable than
software B?software B?
If we change software A, does it become If we change software A, does it become
less maintainable?less maintainable?
We’d like to measure itWe’d like to measure it

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3333

Metrics would help with lifecycle Metrics would help with lifecycle
cost estimationcost estimation

Vendor A produces software which is very Vendor A produces software which is very
inexpensive to buy, yet is so inexpensive to buy, yet is so
unmaintainableunmaintainable that only the vendor can that only the vendor can
change itchange it
Vendor B produces expensive software Vendor B produces expensive software
which is easy for all to maintainwhich is easy for all to maintain

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3434

EmergenceEmergence
A hard challenge is raised by “emergent” A hard challenge is raised by “emergent”
applications and organisationsapplications and organisations
Systems DomainSystems Domain

Well defined boundaries and requirementsWell defined boundaries and requirements

Business DomainBusiness Domain
Emergent OrganisationsEmergent Organisations

““Organisations in a state of continual process Organisations in a state of continual process
change, never arriving, always in transitionchange, never arriving, always in transition””

D. Truex, R.Baskeville and H.Klein, “Growing Systems in Emergent
Organizations”, Comm.ACM, Vol.42, No.8, August 1999

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3535

System and emergenceSystem and emergence

SystemSystem
Complexity in algorithms and real timeComplexity in algorithms and real time
Boundaries of concern tend to be fixedBoundaries of concern tend to be fixed
Careful cautious process of evolution Careful cautious process of evolution egeg CICSCICS

EmergentEmergent
Change is continuous, not discreteChange is continuous, not discrete
Very rapid rate of change, set by businessVery rapid rate of change, set by business
EgEg ee--businesses (NHS??!!)businesses (NHS??!!)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3636

Changing Nature of BusinessChanging Nature of Business

40% of Fortune 500 companies in 1979 40% of Fortune 500 companies in 1979
are no longer corporate entitiesare no longer corporate entities
30% of firms under 10 employees 30% of firms under 10 employees
generate 70% of EU turnovergenerate 70% of EU turnover
Competitiveness through time to market is Competitiveness through time to market is
major drivermajor driver

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3737

AnswerAnswer

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3838

AnalogyAnalogy

Cities and buildings evolve in a way that is Cities and buildings evolve in a way that is
inconceivable to their original inhabitants e.g. inconceivable to their original inhabitants e.g.
RomansRomans
Is Durham “more evolvable” than Is Durham “more evolvable” than BariBari??
Cities tend to evolve incrementally, reacting to Cities tend to evolve incrementally, reacting to
short term goals and those in power, and short term goals and those in power, and
making use of existing structures.making use of existing structures.
Building Pompeii alongside Vesuvius less obvious Building Pompeii alongside Vesuvius less obvious
after the eruption of AD79after the eruption of AD79

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 3939

ObservationsObservations

Mostly we have “research by advocacy”, which Mostly we have “research by advocacy”, which
assumes all but one factor (typically assumes all but one factor (typically
requirements) remains constant, e.g. requirements) remains constant, e.g. OOOO, ,
extreme programmingextreme programming, WITHOUT evidence, WITHOUT evidence
Software evolves Software evolves –– so does theory, tools, so does theory, tools,
process, technology, environments, people, process, technology, environments, people,
expectations, legal framework, trust….expectations, legal framework, trust….
[How buildings learn [How buildings learn –– S Brand S Brand
ISBN0753800500]ISBN0753800500]

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4040

Typical problemTypical problem

A simple highly localised requirement A simple highly localised requirement
change requires a substantial and highly change requires a substantial and highly
distributed set of changes throughout the distributed set of changes throughout the
software (e.g. Harrier)software (e.g. Harrier)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4141

IndustryIndustry

Industry seems unwilling to pay for Industry seems unwilling to pay for
benefits which are not quantifiable benefits which are not quantifiable
(maintainability, retest costs): high cost (maintainability, retest costs): high cost
for intangible benefit. for intangible benefit.
Reverse engineering, other than some Reverse engineering, other than some
sorts of code restructuring, seems sorts of code restructuring, seems
problematic.problematic.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4242

ConclusionsConclusions

We don’t understand flexible softwareWe don’t understand flexible software
We cannot measure it; We cannot measure it;
Pragmatically, addressed by employing Pragmatically, addressed by employing
excellent (but low status) staffexcellent (but low status) staff

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4343

PausePause

We understand the problem domainWe understand the problem domain
But what is the solution?But what is the solution?

A Grand Challenge: “Right first time every A Grand Challenge: “Right first time every
time”time”

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4444

Pennine approachPennine approach

We started with a user study in cognate We started with a user study in cognate
disciplines (ref. CACM paper)disciplines (ref. CACM paper)
Users do not like evolution (though it is no Users do not like evolution (though it is no
use having last year’s tax tables)use having last year’s tax tables)
Fundamentally they do not like Fundamentally they do not like cost of cost of
ownershipownership. They want to have the benefit . They want to have the benefit
of of usingusing software without its cost.software without its cost.

P.Brereton, D.Budgen, K.Bennett, M.Munro, P.Layzell, L.Macaulay, D.Griffiths and
C.Stannett, “The Future of Software: Defining the Research Agenda”, Comm. ACM,
Vol.42, No.12, December 1999

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4545

Basic ideaBasic idea

We have a marketplace of software We have a marketplace of software
servicesservices
When we need a better/faster/cheaper When we need a better/faster/cheaper
service, we substitute the old service by a service, we substitute the old service by a
new one then and there (on the fly)new one then and there (on the fly)
No magic solutions (self evolving, No magic solutions (self evolving,
autonomic etc.)autonomic etc.)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4646

A serviceA service

A business definition: something that is A business definition: something that is
used, not owned (used, not owned (cfcf web services)web services)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4747

Idea for evolutionIdea for evolution

Get the granularity of change right Get the granularity of change right
(currently tied up with MS marketing (currently tied up with MS marketing
strategy)strategy)
Users use services. They compose what Users use services. They compose what
they want to do out of current services at they want to do out of current services at
the instant of need!the instant of need!
Then execute the compositionThen execute the composition
Then (like a rental car) disengage.Then (like a rental car) disengage.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4848

Demand ledDemand led

Consider e.g. WORD. Constantly changing, Consider e.g. WORD. Constantly changing,
in ways not required by most usersin ways not required by most users
Users become very hostileUsers become very hostile
Of course, this is MS business model Of course, this is MS business model ––
updating to sustain revenueupdating to sustain revenue
This is supply side, or vendor led changeThis is supply side, or vendor led change

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 4949

Service**Service**

The user employs the best/most The user employs the best/most
recent/cheapest/most dependable servicesrecent/cheapest/most dependable services
When use complete, then disengageWhen use complete, then disengage

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5050

Software as a ServiceSoftware as a Service

A user (human or program) does not own A user (human or program) does not own
software software –– they rent itthey rent it
At the point of need they compose the At the point of need they compose the
system they need to undertake a task system they need to undertake a task
(ultra late binding)(ultra late binding)
They execute thisThey execute this
And then disengageAnd then disengage

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5151

HypothesisHypothesis

In In SaaSSaaS software functionality is delivered software functionality is delivered
as a serviceas a service
Each time functionality is required, service Each time functionality is required, service
elements are identified, terms and elements are identified, terms and
conditions are negotiated, executed and conditions are negotiated, executed and
then “disengaged” then “disengaged” –– so there is no further so there is no further
obligation to that particular solutionobligation to that particular solution

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5252

How might evolution be addressed?How might evolution be addressed?

The available services will evolve to meet The available services will evolve to meet
user needs. If service providers evolve user needs. If service providers evolve
services to meet needs, they are services to meet needs, they are
rewarded; if not they are punished!rewarded; if not they are punished!
That’s the property of a marketplaceThat’s the property of a marketplace
We are exploring this in the health service We are exploring this in the health service
domain (IBHIS)domain (IBHIS)
CfCf evolution of a cityevolution of a city

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5353

Example: payroll**Example: payroll**

This week: paper payslipsThis week: paper payslips
Next week: uses an email serviceNext week: uses an email service

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5454

Is this a commodity market?Is this a commodity market?

No, not necessarily. Many CS people think No, not necessarily. Many CS people think
of it like this, and see the matching of it like this, and see the matching
problem as core. Essentially a payproblem as core. Essentially a pay--perper--
view model. See public UDDI sites for view model. See public UDDI sites for
problems with WSDL and problems with WSDL and
http://http://www.uddicentral.comwww.uddicentral.com//
In business there are many other models In business there are many other models
egeg Kaizen, preferred supplier.Kaizen, preferred supplier.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5555

Is the composition hard?Is the composition hard?

Compositions may be sold as servicesCompositions may be sold as services
We don’t see this otherwise as automatic We don’t see this otherwise as automatic
((ieie magic)magic)
A rather open problem for us is the A rather open problem for us is the
process (links to Brian process (links to Brian WarboysWarboys’ group)’ group)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5656

What are the hard problems?What are the hard problems?

We assume that we have a reliable distributed We assume that we have a reliable distributed
infrastructure, across heterogeneous infrastructure, across heterogeneous
autonomous organisations, such as that autonomous organisations, such as that
provided by WS or Gridprovided by WS or Grid
The hard issues then address business related The hard issues then address business related
problems like terms and conditions, negotiation problems like terms and conditions, negotiation
protocols, legal frameworks, protocols, legal frameworks, trusttrust, dependability, dependability
And, in particular, securityAnd, in particular, security
Ultra late binding of T & C is interesting.Ultra late binding of T & C is interesting.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5757

Serviceware
Payment terms
and conditions

Personalisation
and configuration

Privacy, protection
and security

Performance
criteria

Binding

System failure
recovery and

redress

Responsibilities
prior to use

Trust and
confidence

Software

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5858

SummarySummary

Our proposal sees evolution only partly as Our proposal sees evolution only partly as
a technical issue (ultra late binding)a technical issue (ultra late binding)
The rest is based on “socioThe rest is based on “socio--technical technical
issues” issues” akaaka people and marketspeople and markets
We seek an evidenceWe seek an evidence--based evaluationbased evaluation
We are developing formal modelsWe are developing formal models

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 5959

IBHIS OverviewIBHIS Overview

IDC

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6060

Architecture: Operational Architecture: Operational
SystemSystem

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6161

Learning about web servicesLearning about web services

Version 1: static architecture, no UDDI, Version 1: static architecture, no UDDI,
setup by administrator, completed setup by administrator, completed
decemberdecember 20032003
Version 2: dynamic binding, using WSDL Version 2: dynamic binding, using WSDL
and UDDIand UDDI

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6262

Web services 1Web services 1

We used RPC, but too static and We used RPC, but too static and
unscaleableunscaleable (too many proxies). Needs (too many proxies). Needs
document styledocument style
WebsphereWebsphere and its wizards worked welland its wizards worked well
UDDI shows many limitations for UDDI shows many limitations for
describing resources, finding, binding. describing resources, finding, binding.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6363

Web services 2Web services 2

In V1 we used a global schema as our In V1 we used a global schema as our
ontology. We need domain ontology. We need domain ontologiesontologies ((egeg
MEDINFO)MEDINFO)
WSDL has very limited support for terms WSDL has very limited support for terms
and conditions, for negotiationand conditions, for negotiation
Security, privacy remain problematic. We Security, privacy remain problematic. We
have used RBAChave used RBAC
Performance Performance -- needs detailed studyneeds detailed study

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6464

ConclusionsConclusions

We have presented a demand led possible We have presented a demand led possible
solution to software evolutionsolution to software evolution
Functionally, the basic hypothesis seems Functionally, the basic hypothesis seems
to work (version 1)to work (version 1)
In version 2, more realistic experiments of In version 2, more realistic experiments of
evolution (much more dynamic evolution (much more dynamic testbedtestbed))
will be undertakenwill be undertaken
Our work uses Our work uses wsws as infrastructureas infrastructure

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6565

endend

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6666

Steve Steve Schach’sSchach’s resultsresults

At Vanderbilt University, TexasAt Vanderbilt University, Texas
srs@vuse.vanderbilt.edusrs@vuse.vanderbilt.edu

Three unexpected results with open Three unexpected results with open
source softwaresource software

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6767

1. Who finds errors?1. Who finds errors?

Open source software tends to have many Open source software tends to have many
peripheral readers (find fixes, suggest repairs) peripheral readers (find fixes, suggest repairs)
and a few core people who can modify the and a few core people who can modify the
softwaresoftware
The tenet of the open source movement is: The tenet of the open source movement is:
many many osos products are so successful because products are so successful because
vast numbers of people on the periphery study vast numbers of people on the periphery study
the code, find problems, suggest fixes.the code, find problems, suggest fixes.
“Given enough eyeballs, all bugs are shallow”“Given enough eyeballs, all bugs are shallow”

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6868

Results 1Results 1

Tomcat Gnome and Tomcat Gnome and
mozillamozilla

10.410.489.689.6

18.918.981.181.1

28.328.371.771.7Tomcat 4Tomcat 4
Core Periphery

Gnome

Mozilla

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 6969

Conclusions 1Conclusions 1

Most bugs are found and fixed by core Most bugs are found and fixed by core
membersmembers
The large number of peripheral eyeballs The large number of peripheral eyeballs
have a small effecthave a small effect
Steve’s current work is suggesting that Steve’s current work is suggesting that
most enhancements come from the core most enhancements come from the core
team too.team too.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7070

Problem 2 CouplingProblem 2 Coupling

SchachSchach and his group studied coupling and his group studied coupling
through global variables in 365 versions of through global variables in 365 versions of
LINUX (3M LOC each)LINUX (3M LOC each)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7171

Results 2Results 2

The number of couplings through The number of couplings through globalsglobals
rises exponentially with version number.rises exponentially with version number.
The LOC grows linearly with version The LOC grows linearly with version
number.number.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7272

Conclusions 2Conclusions 2

These would indicate that LINUX is These would indicate that LINUX is
becoming becoming unmaintainableunmaintainable

(global variable instances in kernel = (global variable instances in kernel =
1022; outside kernel = 14688)1022; outside kernel = 14688)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7373

Problem 3 Problem 3 LientzLientz and Swansonand Swanson

Summary of resultsSummary of results
Questionable methods (survey based, not Questionable methods (survey based, not
actual metrics, in CMM level 1 actual metrics, in CMM level 1
organisations)organisations)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7474

Result 3Result 3

For open source systems studied (GCC, For open source systems studied (GCC,
LINUX kernel, a RT system), >40% is LINUX kernel, a RT system), >40% is
corrective maintenance.corrective maintenance.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7575

Conclusions 3Conclusions 3

SchachSchach argues that argues that LintzLintz & Swanson are & Swanson are
wrong for open sourcewrong for open source
KHB: I’d ask if this were not what KHB: I’d ask if this were not what LehamnLehamn
has been saying for 25 years. The open has been saying for 25 years. The open
source software is all Ssource software is all S--type. L & S type. L & S
addressed applications which are basically addressed applications which are basically
EE--type.type.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7676

OverallOverall

Schach’sSchach’s fascinating results show the fascinating results show the
value of empirical workvalue of empirical work
Open source is worthy of more Open source is worthy of more
investigationinvestigation

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7777

The lifecycleThe lifecycle

Evolution costs for successful softwareEvolution costs for successful software
What are the activities/types?What are the activities/types?
Program comprehensionProgram comprehension
ReRe--validation e.g. Harriervalidation e.g. Harrier

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7878

What do we know?What do we know?

Types of software: Lehman’s E, S and P Types of software: Lehman’s E, S and P
types.types.
Lehman’s 8 laws e.g. Structural decayLehman’s 8 laws e.g. Structural decay

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 7979

FrameworkFramework

RajlichRajlich and Bennett frameworkand Bennett framework
Bennett K. H. and Bennett K. H. and RajlichRajlich V. T. V. T. A staged A staged

mode for the software lifecyclemode for the software lifecycle. IEEE . IEEE
Computer, vol. 33, no. 7, pp. 66 Computer, vol. 33, no. 7, pp. 66 ––71, July 71, July
2000, ISSN 00182000, ISSN 0018--9162.9162.
Analysis of empirical resultsAnalysis of empirical results

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8080

EvolutionEvolution

NOT simply “initial development” and then NOT simply “initial development” and then
“maintenance”“maintenance”

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8181

Additional empirical dataAdditional empirical data

CusumanoCusumano and Selby reported that requirements during and Selby reported that requirements during
each iteration may change by 30% or more, as a direct each iteration may change by 30% or more, as a direct
result of the team learning process during the iteration result of the team learning process during the iteration
LehnerLehner described yearly variations in the frequency of described yearly variations in the frequency of
the changes of a long lived systemthe changes of a long lived system

frequency peaks, then declinesfrequency peaks, then declines
identified different phases identified different phases

PigoskiPigoski: similar data: similar data
facts: facts:

inability to predict changesinability to predict changes
several different stages, not a uniform “maintenance”several different stages, not a uniform “maintenance”

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8282

Initial development

Evolution

first running version
evolution changes

Servicing

loss of evolvability
servicing patches

Close-down

Phase-out

servicing discontinued

Switch-off

Staged model of Staged model of
software lifecyclesoftware lifecycle

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8383

Initial development*Initial development*

first version of the software system is developedfirst version of the software system is developed
may be lacking some featuresmay be lacking some features
already possesses the already possesses the architecturearchitecture that will persist thought the that will persist thought the
rest of the life of the programrest of the life of the program

in one documented instance, we studied a program that underwent in one documented instance, we studied a program that underwent
substantial changes during its 20 years of existence, but it stisubstantial changes during its 20 years of existence, but it still ll
possesses the architecture of the original first version.possesses the architecture of the original first version.

programming team acquires the programming team acquires the knowledgeknowledge ofof
application domain, user requirements, role of the application iapplication domain, user requirements, role of the application in n
the business process, solutions and algorithms, data formats, the business process, solutions and algorithms, data formats,
strengths and weaknesses of the program architecture, strengths and weaknesses of the program architecture,
operating environment, etc. operating environment, etc.
crucial prerequisite for the subsequent phase of crucial prerequisite for the subsequent phase of evolutionevolution..

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8484

Research challenge*Research challenge*

To build evolvable softwareTo build evolvable software
assist the next (evolution) stage, not subsequent stagesassist the next (evolution) stage, not subsequent stages
‘design for change’ should be predominantly aimed at ‘design for change’ should be predominantly aimed at
strategic evolution, not code level servicingstrategic evolution, not code level servicing
in the evolvable architecture, ‘the cost of making the in the evolvable architecture, ‘the cost of making the
change is proportional to the size of the change, not to change is proportional to the size of the change, not to
the size of the overall software system’the size of the overall software system’
evolvable software can handle unanticipated changes evolvable software can handle unanticipated changes

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8585

Evolution*Evolution*

goalsgoals
to adapt the application to the everto adapt the application to the ever--changing user and operating changing user and operating
environmentenvironment
to correct the faults in the applicationto correct the faults in the application
to respond to both developer and user learningto respond to both developer and user learning

inevitability of evolution [Lehman] inevitability of evolution [Lehman]
business setting of evolutionbusiness setting of evolution

user demand is stronguser demand is strong
the organization is supportivethe organization is supportive
return on investment is excellentreturn on investment is excellent
both software architecture and software team knowledge make both software architecture and software team knowledge make
evolution possibleevolution possible

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8686

Code decay*Code decay*

There is a positive feedback between the loss of There is a positive feedback between the loss of
software architecture coherence, and the loss of the software architecture coherence, and the loss of the
software knowledgesoftware knowledge

less coherent architecture requires more extensive knowledge in less coherent architecture requires more extensive knowledge in
order to evolve itorder to evolve it
if the knowledge necessary for evolution is lost, the changes inif the knowledge necessary for evolution is lost, the changes in
the software will lead to a faster deterioration of the architecthe software will lead to a faster deterioration of the architectureture

Example of loss of knowledge:Example of loss of knowledge:
loss of key personnelloss of key personnel

Research challenge: eliminate or slow code decayResearch challenge: eliminate or slow code decay

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8787

Servicing* Servicing*
the program is no longer evolvablethe program is no longer evolvable
changes are limited to patches and wrapperschanges are limited to patches and wrappers

they are less costlythey are less costly
they further deteriorate the architecture.they further deteriorate the architecture.

Senior designers and architects do not need to be Senior designers and architects do not need to be
availableavailable
Tools and processes are very different from evolutionTools and processes are very different from evolution
A typical engineer will be assigned only part of the A typical engineer will be assigned only part of the
software to supportsoftware to support

will have partial knowledge of the system.will have partial knowledge of the system.

The process is stable, well understood and mature. The process is stable, well understood and mature.
it is well suited to process measurement and improvementit is well suited to process measurement and improvement

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8888

Research issues in servicing*Research issues in servicing*

Making the change without unexpected additional effectsMaking the change without unexpected additional effects
Program comprehension Program comprehension
Impact analysis and ripple effect management.Impact analysis and ripple effect management.
Regression testingRegression testing
Concept identification, location and representation.Concept identification, location and representation.
Automated tool for code improvementAutomated tool for code improvement
Documentation management Documentation management
Delivery of service patches Delivery of service patches

Upgrading software without the need to halt it.Upgrading software without the need to halt it.

Program health checkersProgram health checkers

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 8989

Reversal from servicing to Reversal from servicing to
evolution*evolution*

worthy research goalworthy research goal
in practice: in practice:

very hard, very rarevery hard, very rare

not simply a not simply a technicaltechnical problemproblem
the the knowledgeknowledge of the software team must also be addressedof the software team must also be addressed

for all practical reasons, the transition from evolution to for all practical reasons, the transition from evolution to
servicing is irreversibleservicing is irreversible

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9090

PhasePhase--out and close down stages*out and close down stages*

phasephase--outout
no more servicing is being undertaken, but the system still no more servicing is being undertaken, but the system still
may be in productionmay be in production
the users must work around known deficienciesthe users must work around known deficiencies

closeclose--downdown
the software use is disconnected the software use is disconnected
the users are directed towards a replacement. the users are directed towards a replacement.

business issues:business issues:
Can any of the software be reCan any of the software be re--used?used?
‘exit strategy’ is needed. ‘exit strategy’ is needed.

once an organization commits to a system, changing to another once an organization commits to a system, changing to another
is expensive, technically difficult, and time consuming. is expensive, technically difficult, and time consuming.
Do data have to be preserved?Do data have to be preserved?

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9191

Versioned staged Versioned staged
model*model*

Close-down Version 1

Initial development

Close-down Version 2

Phase-out Version 2

Phase-out Version 1

Servicing Version 1

Evolution Version 1

first running version

evolution changes

Evolution Version . . .

Evolution Version 2

evolution of new version

evolution of new version

evolution changes

servicing patches

Servicing Version 2

servicing patches

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9292

Software change*Software change*

basic operation of both software evolution and software basic operation of both software evolution and software
servicingservicing
change minichange mini--cycle consists of the following phases:cycle consists of the following phases:
Request for changeRequest for change
Planning phasePlanning phase
Program comprehensionProgram comprehension
Change impact analysisChange impact analysis
Change implementationChange implementation
Restructuring for changeRestructuring for change
Change propagationChange propagation
Verification and validationVerification and validation
ReRe--documentationdocumentation

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9393

Software change*Software change*

Program comprehension is a prerequisite of any changeProgram comprehension is a prerequisite of any change
it has been reported that this phase consumes more than half of it has been reported that this phase consumes more than half of
all maintenance timeall maintenance time

Change impact analysis assesses the extent of the Change impact analysis assesses the extent of the
change, i.e. the components that will be impacted by the change, i.e. the components that will be impacted by the
changechange

it indicates how costly the change is going to beit indicates how costly the change is going to be

Change propagationChange propagation
change may consist of several steps, each visiting one specificchange may consist of several steps, each visiting one specific
software componentsoftware component
if the visited component is modified, it may no longer fit with if the visited component is modified, it may no longer fit with the the
restrest
neighboring components may need to be changedneighboring components may need to be changed 28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9494

Delocalization of change*Delocalization of change*

The architecture does not support contemplated change, The architecture does not support contemplated change,
because the concepts of the application domain relevant because the concepts of the application domain relevant
to the change are delocalized in the codeto the change are delocalized in the code
the solution is to restructure first and to localize the the solution is to restructure first and to localize the
concept in one location, and then to change itconcept in one location, and then to change it
behavior preserving transformations do not change the behavior preserving transformations do not change the
behavior of the program, but change the architecture. behavior of the program, but change the architecture.
In the case of delocalized changes, an advisable strategy In the case of delocalized changes, an advisable strategy
is: is:

to transform the architecture so that the change will be localizto transform the architecture so that the change will be localizeded
then to make the change itself then to make the change itself

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9595

RedocumentationRedocumentation**

change is not complete without the update of the program change is not complete without the update of the program
documentationdocumentation
if the documentation of the program is missing or incomplete, if the documentation of the program is missing or incomplete,
the end of the minithe end of the mini--cycle is the opportunity to record the cycle is the opportunity to record the
comprehension acquired during the changecomprehension acquired during the change
program comprehension is a very valuable commodity (more program comprehension is a very valuable commodity (more
than 50% of resources of software maintenance) than 50% of resources of software maintenance)
in current practice, that value is thrown away when the in current practice, that value is thrown away when the
programmer completes the change and turns his/her attention programmer completes the change and turns his/her attention
to new thingsto new things
in order to avoid that loss, incremental and opportunistic rein order to avoid that loss, incremental and opportunistic re--
documentation effort is called for. After a time, substantial documentation effort is called for. After a time, substantial
documentation can be accumulated documentation can be accumulated

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9696

SummarySummary

Underpinning the field are two views:Underpinning the field are two views:
ReactiveReactive: we cannot predict new : we cannot predict new
requirements, new technology, new requirements, new technology, new
markets, new processes, so evolution markets, new processes, so evolution
must always react to eventsmust always react to events
ProactiveProactive: Evolution can be planned in : Evolution can be planned in
advance Processes, tools, products)advance Processes, tools, products)

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9797

Solutions to evolutionSolutions to evolution

Heavyweight processes e.g. CICS and Heavyweight processes e.g. CICS and
avoid adavoid ad--hochoc
Good staffGood staff
Heavy stress on revalidationHeavy stress on revalidation
Wrap legacy componentsWrap legacy components
Then try to improve each component of Then try to improve each component of
such heavyweight processes.such heavyweight processes.

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9898

Reverse engineeringReverse engineering

Redesigning all or part of a software Redesigning all or part of a software
system to improve its quality (system to improve its quality (ChikovskyChikovsky))
Code improvement (within one stage of Code improvement (within one stage of
the staged lifecycle) may be viablethe staged lifecycle) may be viable

28/06/200428/06/2004 Erasmus: University of Bari 2004Erasmus: University of Bari 2004 9999

Reversal from servicing to Reversal from servicing to
evolutionevolution

worthy research goalworthy research goal
in practice: in practice:

very hard, very rarevery hard, very rare

not simply a not simply a technicaltechnical problemproblem
the the knowledgeknowledge of the software team must also be addressedof the software team must also be addressed

for all practical reasons, the transition from evolution to for all practical reasons, the transition from evolution to
servicing is irreversibleservicing is irreversible

