
Empirical Software Engineering 1

Five Things I Hate
About Empirical

Software Engineering
Barbara Kitchenham

Dept. Computer Science

Empirical Software Engineering 2

Empirical Software Engineering
• Empirical Software Engineering involves

• Learning about SE products and processes by observation
and measurement

• Because we want to
– Understand properties of products and processes
– Model products and process - particularly performance

characteristics
– Improve products and process performance
– Compare products and processes and select appropriate

products and processes for specific requirements
– Predict future behaviour of products and processes to assist

monitoring and controlling software production

Empirical Software Engineering 3

What’s wrong?
• Unreasonable expectations

• If empirical research is a good idea, all research must have an
empirical content

• Cookbook approaches to empirical studies
• Experimentation by numbers

• Sound-bite generalisations
• 80-20 rule: 80% of quantitative statements are

unsubstantiated
• Easy targets

• Inspections, inspections and yet more inspections
• Poor experimental methodology

• When in doubt, do a survey

Empirical Software Engineering 4

Unreasonable expectations
• Some people argue we dont do enough empirical

studies
• Tichy

– Many papers make claims that need empirical support
– 40-50% dont have such support

• Zelkowitz and Wallace
– Too many papers have no experimental validation at all
– Too many papers use informal evaluation (i.e. assertion)

• Need to test claims but
• Dont need more poor quality evaluations
• Should not expect all papers to include validations
• Some software properties make empirical studies

questionable

Empirical Software Engineering 5

Limitations of “Scientific Method”
• Scientific method is appropriate when

• There are causal laws underlying observed phenomena
– Acceleration of objects dropped from leaning towers
– Properties of nature, space and time

• Human intensive systems do not have the same claim
to causal laws
• Organizational and political situations "vary according to

circumstances, they cannot be reduced to rule", Niccolo
Machiavelli

Empirical Software Engineering 6

Problems with ESE
• Populations and Samples

• Difficult to define a population for surveys and formal
experiments

• Makes generalisation problematical
• Affects choice of subjects, experimental materials, tasks

– More a problem with respect to materials/tasks than subjects
• Small experiment results may not scale up
• Small experiments may penalise techniques that work on large problems

• Subject and Experimenter Expectations
• Know to be significant confounding problem in medical

experiments
– Reason for double-blind experiments

• Same problem in SW but no solution

Empirical Software Engineering 7

Validating Empirical Methods
• We should evaluate the validity of applying empirical methods to

software development
• However

• Techniques are used without understanding their limitations
– Data Envelopment Analysis from Economics
– Cross-over designs from Medicine
– Statistical Quality Control from Manufacturing

• Empirical methods developed for software problems assumed not to
need validation
– GQM
– CMM

• Unvalidated (and probably unvalidatable) standards
– Function Point measures
– ISO9126 Quality attributes and measures

Empirical Software Engineering 8

Cookbooks
• Goal-Question-Metric Paradigm

• Good servant, bad master
• Easy to have unrealistic expectation of a “paradigm”

• Need to know why you are doing an empirical study
• Essential to link you research questions to a specific

research goal
• Essential to be sure your measures are appropriate
• BUT

• There is no automatic link between goals, questions and
metrics

• Business goals do not map directly to software development
questions

Empirical Software Engineering 9

Other GQM Problems
• GQM templates cannot replace cognition

• Most templates are too easy to complete at a totally
superficial level

• GQM under-emphasises the importance of
experimental design
• Major problem with empirical studies is poor experimental

design
– No concept of a population
– No understanding of sampling

• Incorrect statistical analyses
• Will experimental guidelines help?

• e.g. Kitchenham et al. 2002
• Not if treated as a quality assurance checklist

Empirical Software Engineering 10

Sound bites
• Sound bite examples

• Software Defect Reduction Top 10 List
• About 80% of the defects come from 20% of the modules, and

about half are defect free
– Khosgoftaar reports telecommunication system with 93.7% of

modules fault-free after release
• Perspective-based review catch 35% more defects than non-

directed reviews
– Not supported by Swedish studies

Empirical Software Engineering 11

Sound bite problem
• There is no real information backing up these “facts”

• We are unable to specify a population of software
project/products, so we cant sample such a population

• All such “statistics” are based on specific examples or the
experience of industry “gurus”

• Quantitative anecdotes
– Unscientific - aren’t rejected after finding counter-examples

• May be useful rule of thumb but not underlying
principles of SE

• Could be positively misleading if used for serious
project management decisions
• Need your own statistics
• Include context that is missing from sound bites

Empirical Software Engineering 12

Sound bite detection process
• The statement is unqualified

• Doesn’t say which projects (e.g. size, application area, CMM
level, country of origin)

• Doesn’t say which type of inspections, what type of defects,
or what type of testing process used

• The statement is unquantified
• No standard deviation or standard error
• No indication of number of projects investigated

Empirical Software Engineering 13

Easy Targets - Inspections
• Empirical software engineering could easily be

mistaken for the study of the inspection process
• Experiments are easier to plan for small tasks with

well-defined outputs
• Inspections are are good example:

• Usually don’t take more than two hours
• Have a defect list as a well-defined outcome
• Can use standard software documents with know defects

Empirical Software Engineering 14

What’s the problem
• Inspections are important so why shouldn’t we study

them?
• We should study inspections but

• The basic results are known
– Inspections are good defect detection tasks
– Company-based optimisation may be necessary BUT

• Does not lead to any new scientific knowledge
• Academic researchers should consider more challenging research

• Diverts effort from devising the methodology we need to
tackle other types of study
– Most SE processes are long-term, have complex interactions

with other processes and don’t have an easily-quantifiable
output

– How do we study these sort of phenomena?

Empirical Software Engineering 15

Poor methodology - Surveys
• Mistaken belief that surveys are “easy” form of

empirical study
• Among other things a good survey requires:

• Validated survey instrument
• A defined population
• A valid sampling method
• A pre-defined sample size
• A proper follow-up process

• Most SE surveys ignore all these issues

Empirical Software Engineering 16

Recent examples
• Published Examples

• Swedish benchmarking survey
– Researcher sent questionnaires to 5000 Swedish companies

• Did not validate questionnaire

– Received 91 replies (<2%)
• Did not investigate non-response

– Claim to have established a “National Benchmark of Software
Engineering Practices”

• Survey of IT topics and value to industry
– Researchers put questionnaire on Web

• No defined population & no sampling method
• Claim information will assist curriculum development

– Respondent demographics
• 50% IT, 25% Engineering, 25% Other
• Average years since last degree 9.5

Empirical Software Engineering 17

Underlying problems
• Lack of statistical training

• Most software engineering researchers have computing/IT
degrees

• Do not have statistical training
• Statistical packages cannot compensate for lack of training

– Make the problem worse because they give the impression that
statistics is simple

• Applying scientific method to software engineering
• Human intensive, so no natural laws
• Difficulties associated with human subjects

– Experimenter & subject expectations (Rosnow & Rosenthal)
• Difficulty defining populations & samples

Empirical Software Engineering 18

Underlying problems
• Context and generalization

• Industrial studies are plagued by the problem of context
• Projects are undertaken with a particular context

– Organisational culture
– Staff experience
– Tools and Methods
– Application area

• Reduces the value of case studies and observational studies
• Hard to accumulate evidence about specific phenomenon

• No big questions
• No major empirical questions to focus research effort
• My suggestion for a goal

– Evidence-based software engineering

Empirical Software Engineering 19

Conclusions
• Empirical software engineering suffers from a number

of problems
• Some can be addressed quite easily

• Include statistical training for researchers
• Include statisticians in research teams

• Some are inherent in the nature of software
• Context and population problems
• Large (elapsed time) processes and complex

interdependencies among process and people
• Limit the value of empirical software engineering
• Need methodological advances to address these issues

Empirical Software Engineering 20

References
• Barry Boehm and Victor R. Basili. Software Defect Reduction List, IEEE Computer

January 2001, pp135-137
• B. Kitchenham et al. Preliminary guidelines for empirical research in software

engineering, IEEE TSE, 28(8), 2002, pp721-733
• Taghi M. Khosgoftaar, Edward B. Allen, Jianyu Deng. Controlling overfitting in

Software Quality Models: Experiments with Regression Trees and Classification.
7th International Software Metrics Symposium, 4-6 April 2001, London.

• Lethbridge, Timothy, “What knowledge is important to a software professional,”
IEEE Computer, May 2000.

• W. F. Tichy. Should computer scientists experiment more?, Computer 31(5) May
1998, pp 32-40

• R.L. Rosnow & R. Rosenthal. People Studying People. Artifacts &Ethics in
Behavioural Research. W.H.Freeman & Co., 1997

• Fred B. Schneider and Mike Rodd, editors. International Review of UK Research in
Computer Science, EPSRC BCS IEE, 2001

• M.V. Zelkowitz and D.R. Wallace. Experimental models for validating technology.
Computer, 31(5), May 1998, pp23-31

• Y. Wang, H. Wickberg, A. Dorling and Minna Kaartinen. Establishment of a
National Benchmark of Software Engineering Practices. Proc 4th IEEE
International Symposium on Software Engineering Standards Brazil, 1999

