
Agile Software
Engineering

Frank Maurer
University of Calgary
Computer Science
E-Business Engineering Group
maurer@cpsc.ucalgary.ca
http://sern.ucalgary.ca/~maurer

10/29/03Agile Software Engineering - © 2003 EBE Group2

Why agile methods
! CHAOS Report, Standish Group, 1994

" 31.1%: projects canceled before
completion

" 52.7% of projects will cost 189% of
their original estimates

" 16.2%: projects on-time and on-
budget (larger companies: 9%)

" Projects completed have only
approximately 42% of the originally-
proposed features and functions.

" Smaller companies: 78.4% projects
will get deployed with at least 74.2%

http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://www.standishgroup.com/sample_research/PDFpages/chaos1998.pdf

10/29/03Agile Software Engineering - © 2003 EBE Group4

Extreme Programming

From Beck: XP, Page 70

Scrum
(Sutherland, Schwaber and Beedle)

[From controlchaos.com >
What is Scrum]

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

Kent Beck - Mike Beedle - Arie van Bennekum - Alistair Cockburn - Ward Cunningham - Martin
Fowler - James Grenning - Jim Highsmith - Andrew Hunt - Ron Jeffries - Jon Kern - Brian
Marick - Robert C. Martin - Steve Mellor - Ken Schwaber - Jeff Sutherland - Dave Thomas

http://agilemanifesto.org/

10/29/03Agile Software Engineering - © 2003 EBE Group7 10/29/03Agile Software Engineering - © 2003 EBE Group8

Agile versus
tayloristic methods
! Agile methods

" Human-centric
" Tacit knowledge

sharing
" Code-centric
" Replace

documentation by
face-to-face
communication

" Generalists
" Plan and correct
" Customer-focused

! Tayloristic methods
(plan-driven,
traditional,
heavyweight)
" Process-centric
" Explicit knowledge
" Documentation-

centric
" Role specialization
" Plan and control
" Contract-focused

10/29/03Agile Software Engineering - © 2003 EBE Group9

Knowledge sharing needed

Dev
elo

pm
en

t

Proc
es

s
Business

Knowledge

Technology
Knowledge

Delivered
Software

System

10/29/03Agile Software Engineering - © 2003 EBE Group10

Communication chains
result in knowledge loss

Customer # Analyst # Architect # Designer # Chief programmer # Coder

10% communication error: 59% of information gets to coder
5% communication error: 77% of information gets to coder

Customer # Developer

10% communication error: 90% of information gets to developer
5% communication error: 95% of information gets to developer

10/29/03Agile Software Engineering - © 2003 EBE Group11

Business contracts

! Fixed scope/fixed price contracts
" Trust by contract
" Contract requires documentation # not lightweight
" Opposing sides of table
" Overestimating effort
" High costs for change requests

! Time and expenses: Fixed cost and fixed programmer hours
" Trust by feedback and involvement
" Collaborative environment
" Changes easy
" Issues:

• No time limit on project
• No guaranteed functionality

10/29/03Agile Software Engineering - © 2003 EBE Group12

10/29/03Agile Software Engineering - © 2003 EBE Group13

Productivity of XP

! Industrial case study
! 16 months: 9+2+5
! Stable setting (same team, same

customer, same project)
! Document-oriented/ad-hoc

partial adoption of XP

10/29/03Agile Software Engineering - © 2003 EBE Group14

Productivity

+66.3%
#NLOC

billable hours

+302.1%
#new methods
billable hours

+282.6%
#new classes
billable hours

10/29/03Agile Software Engineering - © 2003 EBE Group15

Productivity (cont.)

+46.9%#bugs fixed
billable hours

-23.9%#new features
billable hours

-4.96%#bugs+features
billable hours

10/29/03Agile Software Engineering - © 2003 EBE Group16

LOC metrics changes

JLOC HLOC NLOC
Ave Pre-XP 4177.22 3267.67 7444.89
Average XP 10608.00 2194.40 12802.40
% Change 153.9% -32.8% 72.0%

Features/hour: -4.96%

10/29/03Agile Software Engineering - © 2003 EBE Group17

Interpretation

+75%#NLOC
#bugs+#features

+323%#methods
#bugs+#features

+302%#classes
#bugs+#features

10/29/03Agile Software Engineering - © 2003 EBE Group18

Issues with the study

! Billable hours – how accurate
! Why is NLOC going up?
! 16 data points from 1 company
! How much of the changes can be

attributed to agile practices?
! Still pretty ad-hoc

10/29/03Agile Software Engineering - © 2003 EBE Group19

The Perceptions Study.
Logistics

! Goal: To find out developer student
perceptions on agile methods

! Total numbers of respondents: 102
" out of 221 invited, 46% response ratio
" voluntarily and anonymously

• hypothesis: voluntarism might lead to
observation of the extreme ends of the
spectrum

! Over 2 years (4 academic semesters)

! Goal: To find out developer student
perceptions on agile methods

! Total numbers of respondents: 102
" out of 221 invited, 46% response ratio
" voluntarily and anonymously

• hypothesis: voluntarism might lead to
observation of the extreme ends of the
spectrum

! Over 2 years (4 academic semesters)

10/29/03Agile Software Engineering - © 2003 EBE Group20

Questions Asked

! Did the students enjoy agile practices?
! What worked for them?
! What problems did they encounter?
! Whether they would use agile practices

in the future (if allowed)?
! What were their impressions of individual

practices?
! How did XP improve their learning?

! Did the students enjoy agile practices?
! What worked for them?
! What problems did they encounter?
! Whether they would use agile practices

in the future (if allowed)?
! What were their impressions of individual

practices?
! How did XP improve their learning?

Using XP improves the

productivity of small teams

Using XP improves the

productivity of small teams

2 4
1

24

16
5

2

25

5

11

5

1
0

1

0

0

10

20

30

40

50

60

70

Disagree Disagree Agree Agree

Strongly Somew hat Not Applicable Somew hat Strongly

SAIT UofC Undergrads UofC Grads

Using XP improves the quality of
code

I would recommend to my
company to use XP

0 1 3

26

17

4
4

22

7

9

6

1
0

0

2

0

10

20

30

40

50

60

Disagree Disagree Agree Agree

Strongly Somew hat Not Applicable Somew hat Strongly

SAIT UofC Undergrads UofC Grads

1
4 4

25

134

10

19

4

9

3

1

3

2

0

0

10

20

30

40

50

60

Disagree Disagree Agree Agree

Strongly Somew hat Not Applicable Somew hat Strongly

SAIT UofC Undergrads UofC Grads
10/29/03Agile Software Engineering - © 2003 EBE Group22

Perceptions on pair
programming

1 2 3 4 5

3
11 14

47

27

3 4 7

62

26

4

18

10

48

22

6
12

6

49

29

0

10

20

30

40

50

60

70

Pair programming perceptions

Q5. I personally like pair
programming.

Q6. I believe that pair
programming speeds up the
development process.

Q7. I believe that pair
programming improves software
quality (better design, code
easier to understand etc)
Q8. If allowed by my company, I
will use pair programming in the
future.

Strongly agree
Strongly disagree

10/29/03Agile Software Engineering - © 2003 EBE Group23

Cost of pair programming

! Williams, Laurie, Kessler, Robert R., Cunningham, Ward, and
Jeffries, Ron, Strengthening the Case for Pair-Programming,
IEEE Software, July/Aug 2000 .
" University study with 41 students
" Higher quality code

• Test cases passed individuals: 73.4%-78.1%
• Test cases passed pairs: 86.4%-94.4%

" Pairs completed assignments 40-50% faster
(average 15% higher costs)

" Pair programming preferred by students (85%)

10/29/03Agile Software Engineering - © 2003 EBE Group24

The Verdict

! The perceptions of XP practices are
overwhelmingly positive
" holds for XP in general and for

individual practices in particular
" holds across all levels of students

ENTHUSIASM

10/29/03Agile Software Engineering - © 2003 EBE Group25

Questioning Ourselves

! Are the results optimistic because XP
is efficient, or simply because the
instructor teaching the course is very
enthusiastic?

(internal validity?)

10/29/03Agile Software Engineering - © 2003 EBE Group26

Lessons Learned:
Academic vs. Industrial

! The logistic of making XP work in an academic setting
is trickier (scheduling problems etc.)

! No steady development pace – lots of spikes (when
assignments are due)
" students work on the most urgent not most important

issues
! Students serve multiple “masters” at a time
! Fixed Scope – Flexible Time (assignments) and Fixed

Scope-Fixed Time (exams) vs.
Flexible-Scope - Fixed Time (in industry)
" academic projects break the timebox

! The logistic of making XP work in an academic setting
is trickier (scheduling problems etc.)

! No steady development pace – lots of spikes (when
assignments are due)
" students work on the most urgent not most important

issues
! Students serve multiple “masters” at a time
! Fixed Scope – Flexible Time (assignments) and Fixed

Scope-Fixed Time (exams) vs.
Flexible-Scope - Fixed Time (in industry)
" academic projects break the timebox

10/29/03Agile Software Engineering - © 2003 EBE Group27

Lessons Learned:
Communication
! Direct students to improve their English

and communication skills
! Encourage electronic communication in

the off-class time
! Discourage “assumptions disease” and

the NIH syndrome
! Ask students to submit their estimates

! Direct students to improve their English
and communication skills

! Encourage electronic communication in
the off-class time

! Discourage “assumptions disease” and
the NIH syndrome

! Ask students to submit their estimates

10/29/03Agile Software Engineering - © 2003 EBE Group28

What Did Not Work

! Scheduling pair programming sessions;
! Difficulties in adjustments when there was a

big difference in skill levels;
! “Estimations were very poor for the first

round”
! “Sometimes we had no idea where or how

to start to solve the problem so building a
test first design was difficult and frustrating”.

10/29/03Agile Software Engineering - © 2003 EBE Group29

Preliminary Results. Do Not Quote

Employee satisfaction in
agile teams
$ World-wide survey of agile developers and managers
$ 251 responses
$ Compared to your other experiences of working in a

non-agile team, how would you rate your current job
now?
$ 47% much better, 25% better

$ Level of job satisfaction
$ 29% very satisfied, 55% satisfied

$ The two most important job satisfiers are:
$ Opportunity to work on interesting projects (62%)
$ Ability to influence decisions that affect you (50%)

http://www.agilenetwork.ca/study/

10/29/03Agile Software Engineering - © 2003 EBE Group30

Issues with agile methods

! Consultants have a short term
perspective

! Anecdotal evidence often from people
earning their money with agile
methods

! Empirical evidence is weak

10/29/03Agile Software Engineering - © 2003 EBE Group31

Empirical software
engineering
! Empirical data is needed to support claims

made by researchers
! Internal and external validity of published

data questionable
! External validity needs industrial input

" Tricky to control environment
" How to convince companies without the data

to participate in study
" Late adopters play catch-up

10/29/03Agile Software Engineering - © 2003 EBE Group32

Extending agile methods

" Tool support & distributed teams
MASE

" Scalability
COACH-IT

" Emerging design
Design Pattern Developer

10/29/03Agile Software Engineering - © 2003 EBE Group33 10/29/03Agile Software Engineering - © 2003 EBE Group34

Agile practices influenced
by team distribution
! Planning game

" Planning, coordination, tracking
! Information access and routing
! Built process
! On-site customer
! Knowledge sharing

10/29/03Agile Software Engineering - © 2003 EBE Group35

Experiences

! System is used by development team
! Distributed progress tracking works
! User story management handy
! Iteration planning uses system even

for collocated meetings

10/29/03Agile Software Engineering - © 2003 EBE Group36

Distributed Pair Programming

! Not big difference to collocated pair programming
! Speed fine using cable model and UofC connection
! Pointing to something more effort
! Problems:

" Do other things on the side
" JUnit UI not properly displayed via NetMeeting

“[Distributed] pair programming seemed to work really well. I would say that it was a little
slower than pair programming normally is, however there was still a good flow of information
(for example with the debugging tools, which I am by no means expert in). Additionally code
quality seemed to be almost on-par with the pair programming I have done.

One of the factors slowing down the programming was that the audio was a bit halting at
times, and there seems to be a tiny lag between when something was said and when it was
heard. This doubtless cannot be helped due to latency.”

K. Read

10/29/03Agile Software Engineering - © 2003 EBE Group37

MASE with COACH-IT

! Goal: Scaling agile practices
! Approach:

" Divide and conquer strategy based on
software architecture

" Enforce contracts by test code: teams
that use a component write tests for it

" Use of web front end to define FIT
tests

10/29/03Agile Software Engineering - © 2003 EBE Group38

10/29/03Agile Software Engineering - © 2003 EBE Group39

Emerging design

! Support Emerging Design to Design
Patterns via:
" Tool Support for Complex Refactoring
" Results of Experimentation with the Tool

10/29/03Agile Software Engineering - © 2003 EBE Group40

Refactoring Classifications

*AST

Design
Patterns

*AST1 ASTKnowledge

Atomic,
Sequential,
Complex

Atomic,

Sequential

AtomicNested
Refactorings

0.. *
classes

0 .. *
classes

< 1 classTarget
Source Scope

>= 1class1 field..*
classes

<= 1 classOriginal
Source Scope

ComplexComplexSequentialSequentialAtomicAtomicRefactoring

10/29/03Agile Software Engineering - © 2003 EBE Group41

Design pattern developer

Original Project Analysis

Design Pattern Developer

Target Project Analysis

Rule Store

Wizards
(User Interface)

Prepare the
original project
for modification

Contains
Complex
Refactorings

Design pattern
knowledge to
which a
refactoring has
access.

User Interface

10/29/03Agile Software Engineering - © 2003 EBE Group42

3. Example Tool Page

10/29/03Agile Software Engineering - © 2003 EBE Group43

3. Example Tool Page

10/29/03Agile Software Engineering - © 2003 EBE Group44

3. Example Tool Change

JSP Entity

JSP Session

VO
Entity

Before

After Generated Code
Modified Code

Session Façade nested Value Object Application

10/29/03Agile Software Engineering - © 2003 EBE Group45

Explorative Case Study

Design
Pattern
Developer
Tool

Design Pattern
Knowledge

Programming
Experience

Eclipse
Experience

Initial
Application

Inputs:

Experimental Unit:

Refactoring to Design Pattern

Time

Failed
Test
Drivers

Response
Variables:

4. Explorative Case Study

Yes1 year2.5 yearsNoN/AYes199

No3 years3 yearsYes27No348

Maybe6 months -1
year

1.5 yearsNo35Yes177

Yes1 year< 1 yearNoN/AYes76

Maybe02 yearsYes33Yes145

NoN/A4 yearsNo60Yes174

Yes4+ years3 yearsNo48Yes243

Did Not Complete Experiment2

Yes1 part time
year

1 part time
month

No47Yes71

Tool over
Manual

Design
Pattern
Experience

J2EE
Experience

Completed
(Test
Drivers
Passed)

Manual
Time

Completed
(Test
Drivers
Passed)

Tool
Time

Participant

Variables

10/29/03Agile Software Engineering - © 2003 EBE Group47

Explorative Case Study

! High & Low Lights:
" “Manual. I come from the ‘code crafter’ school rather than

the ‘test and refactor’ school. So, chances are I wouldn’t
need it on good code, but on bad code I’d worry about
safety”

" “[It] would depend on [the] situation. Probably use the tool
and then manually adjust afterwards.”

! Statistical Analysis of Time, using Paired T-Test:
Null Hypothesis: µX = µY
Alternative Hypothesis: µX < µY
where µ is the mean time to refactor, X is the group that
refactored with the tool and Y is the group that refactored
without the tool.

The null hypothesis is proved false with α = 0.5

Research Process Overview
Current Refactoring State in Agile Software Development

Refactorings
(numerous existing)

Tool Support
(for small

refactorings)

Emerging Design
(via large manual changes

& tool supported small
changes)

Research Design Process

Categorizations
(of existing refactorings)

Criteria for Tool Support
(for complex refactorings)

Work Towards Emerging Design
to Design Patterns

(via large tool supported changes)

complex
refactorings

tool
support

Favorable Data for Tool Supported
Emerging Design to Design Patterns

explorative
case study

Empirical Analysis in Agile Software Development

Empirical Analysis in Software Engineering

10/29/03Agile Software Engineering - © 2003 EBE Group49

Research Web site: http://sern.ucalgary.ca/~milos

Collaboration: maurer@cpsc.ucalgary.ca

EBE Team

Credits:

Empirical results Grigori Melnik, Sebastian Martel
MASE Core Harpreet Bajwa, Thomas Chau, Lawrence Liu, Kris Read
COACH-IT Kris Read
MASE KM Thomas Chau, Harpreet Bajwa, Lawrence Liu
Emerging design Carmen Zannier
OBR Philip Nour
P2P Seth Bowen
TDD Harpreet Bajwa, Chris Mann, Wenliang Xiong,

Carmen Zannier
Lightweight KM Lawrence Liu

10/29/03Agile Software Engineering - © 2003 EBE Group50

10/29/03Agile Software Engineering - © 2003 EBE Group51 10/29/03Agile Software Engineering - © 2003 EBE Group52

10/29/03Agile Software Engineering - © 2003 EBE Group53 10/29/03Agile Software Engineering - © 2003 EBE Group54

10/29/03Agile Software Engineering - © 2003 EBE Group55 10/29/03Agile Software Engineering - © 2003 EBE Group56

10/29/03Agile Software Engineering - © 2003 EBE Group57 10/29/03Agile Software Engineering - © 2003 EBE Group58

10/29/03Agile Software Engineering - © 2003 EBE Group59 10/29/03Agile Software Engineering - © 2003 EBE Group60

10/29/03Agile Software Engineering - © 2003 EBE Group61 10/29/03Agile Software Engineering - © 2003 EBE Group62

10/29/03Agile Software Engineering - © 2003 EBE Group63 10/29/03Agile Software Engineering - © 2003 EBE Group64

10/29/03Agile Software Engineering - © 2003 EBE Group65 10/29/03Agile Software Engineering - © 2003 EBE Group66

10/29/03Agile Software Engineering - © 2003 EBE Group67 10/29/03Agile Software Engineering - © 2003 EBE Group68

10/29/03Agile Software Engineering - © 2003 EBE Group69 10/29/03Agile Software Engineering - © 2003 EBE Group70

