Agile Software

® 0 . .
Engineering

Frank Maurer

University of Calgary
Computer Science

E-Business Engineering Group
maurer@cpsc.ucalgary.ca

http://sern.ucalgary.ca/~maurer

http://www.standishgroup.com/sample research/chaos 1994 1.php
http://www.standishgroup.com/sample research/PDFpages/chaos1998.pdf

e ¢ » | \Why agile methods

o CHAOS Report, Standish Group, 1994 . .]
e 31.1%: projects canceled before Project Resolution History
cohplétion (1994-1998)
e 52.7% of projects will cost 189% of 1908% 26% 28% 46%
their original estimates
Succeeded
e 16.2%: projects on-time and on- 1996% 279 40% 33% Fallod
budget (larger companies: 9%) Challenged
e Projects completed have only 1o 6% 0378, 53%
approximately 42% of the originally-
proposed features and functions. 0% 0% 40% 0% a0% 100%

. o .
e Smaller companies: 78.4% pl’OjeCtS Project success rates are rising. As shown in the resolution of the

will get deployed with at least 74.2% 23,000 applications projects in large, medium, and small cross-
industry, U.S. companies tested by The Standish Group since 1994.

Agile Software Engineering - © 2003 EBE Group

10/29/03

.
Baaning Apiiy

awndll Basa ||Ia|r

CRInEmE
,f'l'r-.-;_-r.u' AL

LI:I"lllln'll.l-r

e ¢ o | Extreme Programming

From Beck: XP, Page 70

Agile Software Engineering - © 2003 EBE Group 10/29/03

Scrum
(Sutherland, Schwaber and Beedle)

[From controlchaos.com >

What is Scrum] QT\‘
L = @aﬁ

Fiirn Fui o Lt bl

n der-aanirssd
B il o R
FradiT Ba 1
Pt i el sl i i iy o e

http://agilemanifesto.org/

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

« Individuals and interactions over processes and tools
» Working software over comprehensive documentation
» Customer collaboration over contract negotiation
 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.
Kent Beck - Mike Beedle - Arie van Bennekum - Alistair Cockburn - Ward Cunningham - Martin

Fowler - James Grenning - Jim Highsmith - Andrew Hunt - Ron Jeffries - Jon Kern - Brian
Marick - Robert C. Martin - Steve Mellor - Ken Schwaber - Jeff Sutherland - Dave Thomas

The Business Case
or Agile Methods

10/29/03

Agile Software Engineering - © 2003 EBE Group

Agile versus

[
tayloristic methods
o Agile methods o Tayloristic methods
e Human-centric (plan-driven,
e Tacit knowledge traditional,
sharing heavyweight)
e Code-centric e Process-centric
e Replace e Explicit knowledge
documentation by e Documentation-
face-to-face centric
communication e Role specialization
e Generalists e Plan and control
e Plan and correct e Contract-focused

e Customer-focused

10/29/03

Agile Software Engineering - © 2003 EBE Group

Knowledge sharing needed

Delivered
Software
System

Agile Software Engineering - © 2003 EBE Group 10/29/03

Communication chains
result in knowledge loss

Customer - Analyst - Architect - Designer - Chief programmer - Coder

10% communication error: 59%b of information gets to coder
5% communication error: 77% of information gets to coder

Customer - Developer

10% communication error: 90% of information gets to developer
5% communication error: 95% of information gets to developer

ONCE AGAIN, T HAVE
NO IDEA LUHAT THEY
LJANT.

WE'RE OUTSOURCING
HALF OF OUR PRO-
GRAMMING LJIORK

TO ELBONIA TO TAKE
ADVANTAGE OF THE
TIME DIFFERENCE.

WELL HAND OFF OUR
REQUIREMENTS AT

THE END OF OUR WORK
DAY AND GET BACK THE
FINISHED CODE THE
MNEXT MORNING.

| LETS PRETEND
WE DIED.

A-43-03 £ 2003 United Festure Sysdiaats, Ine.

www.dilbert.com sconadama®sol.com

2003 United Fastuen Syndicats, Inc,

Business contracts

o Fixed scope/fixed price contracts
e Trust by contract
e Contract requires documentation - not lightweight
e Opposing sides of table
e Overestimating effort
e High costs for change requests
o Time and expenses: Fixed cost and fixed programmer hours
Trust by feedback and involvement
Collaborative environment
Changes easy

Issues:
No time limit on project
No guaranteed functionality

Agile Software Engineering - © 2003 EBE Group 10/29/03

Does it
really work?

Agile Software Engineering - © 2003 EBE Group 10/29/03

® ¢ o | Productivity of XP

o Industrial case study
o 16 months: 9+2+5

o Stable setting (same team, same
customer, same project)

o Document-oriented/ad-hoc
—> partial adoption of XP

Agile Software Engineering - © 2003 EBE Group

[
N
©
S
&

® ¢ © | Productivity

#NLOC .
billable hours | 66-3%
#new methods .
billable hours | +302.1%
#new classes .
billable hours _ | F282.6%

1]
Wil
1]

Agile Software Engineering - © 2003 EBE Group

<]
N
©
S
&

® ¢ » | Productivity (cont.)

#bugs fixed .
billable hours +46.9%
#new features .
billable hours -23.9%

10/29/03

Agile Software Engineering - © 2003 EBE Group

e e o | LOC metrics changes

JLOC HLOC
4177.22 3267.67
10608.00 2194.40

Ave Pre-XP
Average XP

Features/hour: -4.96%

10/29/03

Agile Software Engineering - © 2003 EBE Group

® ¢ o | |nterpretation

#NLOC o
#bugs+#features +75%
#methods o
#bugs+ifeatures +323%
#classes o
#bugs+i#features +302%
——

Agile Software Engineering - © 2003 EBE Group

I
N
©
S
&

® ® o | |ssues with the study

o Billable hours — how accurate
o Why is NLOC going up?
o 16 data points from 1 company

o How much of the changes can be
attributed to agile practices?

o Still pretty ad-hoc

1]
Wil
1]

Agile Software Engineering - © 2003 EBE Group

1<
N
©
S
&

The Perceptions Study.

L -
Logistics

o Goal: To find out develepe+ student
perceptions on agile methods

o Total numbers of respondents: 102
e out of 221 invited, 46% response ratio

e voluntarily and anonymously

hypothesis: voluntarism might lead to
observation of the extreme ends of the
spectrum

o Over 2 years (4 academic semesters)

i UNIVERSITY OF -
CTARGARY - -
= -— -—

Agile Software Engineering - © 2003 EBE Group 10/29/03

e o » |Questions Asked

o Did the students enjoy agile practices?
o What worked for them?
o What problems did they encounter?

o Whether they would use agile practices
in the future (if allowed)?

o What were their impressions of individual
practices?

o How did XP improve their learning?

Agile Software Engineering - © 2003 EBE Group 10/29/03

Using XP improves the

productivity of small teams

Perceptions on pair
programming

Using XP improves the quality of .

code

| would recommend to my

company to use XP

Pair programming perceptions

@ Q5. | personally like pair
programming.

m Q6. | believe that pair
programming speeds up the
development process.

0O Q7. | believe that pair
programming improves software
quality (better design, code
easier to understand etc)

00 Q8. If allowed by my company, |
will use pair programming in the
future.

Strongly d%agree

Strongly agree

® e o | Cost of pair programming

o Williams, Laurie, Kessler, Robert R., Cunningham, Ward, and
Jeffries, Ron, Strengthening the Case for Pair-Programming,
IEEE Software, July/Aug 2000 .

e University study with 41 students

e Higher quality code
Test cases passed individuals: 73.4%-78.1%
Test cases passed pairs: 86.4%-94.4%

e Pairs completed assignments 40-50% faster
(average 15% higher costs)

e Pair programming preferred by students (85%)

EXTREME PROGRAMMING

STUDIES PROVE THAT |%| SOMETIMES T CAN
TWO PROGRAMMERS §| WHISTLE THROUGH
ON ONE COMPUTER f| BOTH NOSTRILS. TVE
2| IS THE MOST PRODUC- || SAVED A FORTUNE
TIVE ARRANGEMENT. £| IN HARMONICAS

THE TWO OF YOU WILL
BE A CODE-LJRITING
TEAM.

H
;
£
i
H
€
3
H

10/29/03

[

Copyright @ 26083 United Feature Syndicats, Inc.

The Verdict

o The perceptions of XP practices are
overwhelmingly positive

e holds for XP in general and for
individual practices in particular

e holds across all levels of students

Agile Software Engineering - © 2003 EBE Group 10/29/03

® ¢ o | Questioning Ourselves

o Are the results optimistic because XP
is efficient, or simply because the
instructor teaching the course is very
enthusiastic?

(internal validity?)

Agile Software Engineering - © 2003 EBE Group

I
N
©
S
&

Lessons Learned:

(X) . .
Academic vs. Industrial

o The logistic of making XP work in an academic setting
is trickier (scheduling problems etc.)

o No steady development pace — lots of spikes (when
assignments are due)

e students work on the most urgent not most important
issues

o Students serve multiple “masters” at a time

o Fixed Scope — Flexible Time (assignments) and Fixed
Scope-Fixed Time (exams) vs.

Flexible-Scope - Fixed Time (in industry)
e academic projects break the timebox

1]
Wil
1]

Agile Software Engineering - © 2003 EBE Group

1<
N
©
S
&

Lessons Learned:

o0 . .
Communication

o Direct students to improve their English
and communication skills

o Encourage electronic communication in
the off-class time

o Discourage “assumptions disease” and
the NIH syndrome

o Ask students to submit their estimates

Agile Software Engineering - © 2003 EBE Group 10/29/03

e o o [\What Did Not Work

o Scheduling pair programming sessions;
o Difficulties in adjustments when there was a
big difference in skill levels;

o “Estimations were very poor for the first
round”

o “Sometimes we had no idea where or how
to start to solve the problem so building a
test first design was difficult and frustrating”.

Agile Software Engineering - © 2003 EBE Group 10/29/03

http://www.agilenetwork.ca/study/

Employee satisfaction in
agile teams

- World-wide survey of agile developers and managers
= 251 responses

- Compared to your other experiences of working in a
non-agile team, how would you rate your current job
now?

= 47% much better, 25% better
- Level of job satisfaction

= 29% very satisfied, 55% satisfied
- The two most important job satisfiers are:

= Opportunity to work on interesting projects (62%)
= Ability to influence decisions that affect you (50%

Preliminary Results. Do Not Quote

~—

Agile Software Engineering - © 2003 EBE Group

I
N
©
S
&

® ¢ o | |ssues with agile methods

o Consultants have a short term
perspective

o Anecdotal evidence often from people
earning their money with agile
methods

o Empirical evidence is weak

1]
Wil
1]

Agile Software Engineering - © 2003 EBE Group

1<
N
©
S
&

Empirical software
engineering

o Empirical data is needed to support claims
made by researchers

o Internal and external validity of published
data questionable

o External validity needs industrial input
e Tricky to control environment

e How to convince companies without the data
to participate in study

e Late adopters play catch-up

¥ OF -

.73

Y - -
-— -

Agile Software Engineering - © 2003 EBE Group 10/29/03

e ¢ » | Extending agile methods

e Tool support & distributed teams
-> MASE

e Scalability
- COACH-IT

e Emerging design
-> Design Pattern Developer

10/29/03

Agile Software Engineering - © 2003 EBE Group

TR

i ek | Sl i i
== At = o i -
L M MASE: Whiteboard e
a - L) . 1

Agile Software Engineering - © 2003 EBE Group

OUI\

Agile practices influenced
by team distribution

o Planning game

e Planning, coordination, tracking
o Information access and routing
o Built process
o On-site customer
o Knowledge sharing

1]
Wil
1]

Agile Software Engineering - © 2003 EBE Group

1<
N
©
S
&

e e o [Experiences

o System is used by development team
o Distributed progress tracking works
o User story management handy

o Iteration planning uses system even
for collocated meetings

Agile Software Engineering - © 2003 EBE Group 10/29/03

Distributed Pair Programming

“[Distributed] pair programming seemed to work really well. | would say that it was a little
slower than pair programming normally is, however there was still a good flow of information
(for example with the debugging tools, which I am by no means expert in). Additionally code
quality seemed to be almost on-par with the pair programming | have done.

One of the factors slowing down the programming was that the audio was a bit halting at
times, and there seems to be a tiny lag between when something was said and when it was
heard. This doubtless cannot be helped due to latency.”

K. Read
Not big difference to collocated pair programming .

Speed fine using cable model and UofC connection
Pointing to something more effort
Problems:

e Do other things on the side

e JUnit Ul not properly displayed via NetMeeting

10/29/03

O O O O

Agile Software Engineering - © 2003 EBE Group

e ¢ o | MASE with COACH-IT

o Goal: Scaling agile practices
o Approach:

e Divide and conquer strategy based on
software architecture

e Enforce contracts by test code: teams
that use a component write tests for it

e Use of web front end to define FIT
tests

Agile Software Engineering - © 2003 EBE Group

10/29/03

LR = ey e
B b L= B]

T I S|
CT
M__q]'ﬂl-'- MASE: FIT Extensions]

ninram me mi ek b R

s
Thiv s Hhi Umirrity ol Cabpory Lbraey S

=T

This s o s geeo-gie anaarch

13

1]
Wil
1]

Agile Software Engineering - © 2003 EBE Group

1<
N
©
S
&

® e » | Emerging design

o Support Emerging Design to Design
Patterns via:

e Tool Support for Complex Refactoring
e Results of Experimentation with the Tool

10/29/03

Agile Software Engineering - © 2003 EBE Group

Refactoring Classifications

Refactoring [Atom c Sequenti al | Conpl ex
Oiginal <=1 cl ass 1 field..* >= 1cl ass
Sour ce Scope cl asses
Tar get < 1 class 0o.. * 0.. *
Sour ce Scope cl asses cl asses
Nest ed Atonmic At oni c, At omi c,
Ref act ori ngs Sequent i al Sequenti al ,
Conpl ex
Know edge 1 AST * AST * AST
Desi gn
Pat t er ns
- -
- -
- -

Agile Software Engineering - © 2003 EBE Group 10/29/03

Prepare the
original project
for modification

Contains
Complex —| Y
Refactorings Rule Store]
Wizards
(User Interface)

/ Design Pattern Developem

S~

Original Project Analysis]4—
4

[Target Project Analysis]

_

Agile Software Engineering - © 2003 EBE Group

Design pattern developer

Design pattern
knowledge to
which a
refactoring has

/access.

User Interface

10/29/03

3. Example Tool Page

[rrmimme

[T —— SETTI U, SR W S py ST
v i TN g M-)] DL

[wimp oy

Pl Seiect fm XF Fin oL, | FRETHENEES

[il i Tl o
P e T i B [|m‘

A .
Pl maact ey bauarm il 2 e g iy M:"‘m"iﬁ;ﬂ ~
< [k I et Eati] Larcal |

Agile Software Engineering - © 2003 EBE Group

1]
Wil
1]

<]
N
©
S
&

o0 3

e Wi il T AL] - TR e

=

. Example Tool Page

¥ W et i il o v e e by

okt Y e i, sk A e o T I
e el B i el Wi S g CaC

s D i il o Kl 0701, T 8. TR
=P
e P gy s Ty 5
.. e
A
R T
B T
R T
) =
S iy jw
of frmh (=] I

Agile Software Engineering - © 2003 EBE Group

10/29/03

3. Example Tool Change

Session Facade nested Value Object Application

Before

After W Generated Code
] Modified Code

I
T

Agile Software Engineering - © 2003 EBE Group

10/29/03

® ¢ o | Explorative Case Study

. Response
Inputs: Variables:
Design Experimental Unit: » Time
Pattern———p»
Developer Refactoring to Design Pattern p #
Tool Failed
Test
Drivers
Design Pattern Programming Eclipse Initial
Knowledge Experience Experience Application

Agile Software Engineering - © 2003 EBE Group

10/29/03

4. Explorative Case Study

Variables
Participant | Tool Completed | Manual Completed | J2EE Design Tool over
Time (Test Time (Test Experience | Pattern Manual
Drivers Drivers Experience
Passed) Passed)
1 7 Yes 47 No 1 part time 1 part time Yes
month year
2 Did Not Complete Experiment
3 24 Yes 48 No 3 years 4+ years Yes
4 17 Yes 60 No 4 years N/A No
5 14 Yes 33 Yes 2 years 0 Maybe
6 7 Yes N/A No <1 year 1 year Yes
7 17 Yes 35 No 1.5 years 6 months -1 | Maybe
year
8 34 No 27 Yes 3 years 3 years No
19 Yes N/A No 2.5 years 1 year Yes

e ¢ o | Explorative Case Study

o High & Low Lights:

e “Manual. | come from the ‘code crafter’ school rather than
the ‘test and refactor’ school. So, chances are | wouldn’t
need it on good code, but on bad code I'd worry about
safety”

e “[It] would depend on [the] situation. Probably use the tool
and then manually adjust afterwards.”

o Statistical Analysis of Time, using Paired T-Test:
Null Hypothesis: py = py
Alternative Hypothesis: py < py

where p is the mean time to refactor, X is the group that
refactored with the tool and Y is the group that refactored

without the tool.
- -
- 3-
- -

10/29/03

The null hypothesis is proved false with a = 0.5

Agile Software Engineering - © 2003 EBE Group

Research Process Overview

/ Current Refactoring State in Agile Software Development

Research Design Process

Refactorings ~ ——_

19 Categorizations
(numerous existing)

Tool Support —— Criteria for Tool Support
(for small — P

‘Emerging Design ==—=J> \york Towards Emerging Design
(via large manual changes

& tool supported small
changes)

(of existing refactorings) complex
refactorings
refactorings) (for complex refactorings)) tool

support

to Design Patterns explorative
(via large tool supported changes) case study

N

L7

|
Favorable Data for Tool Supported
K Emerging Design to Design Patterns

Empirical Analysis in Agile Software Development

7

Empirical Analysis in Software Engineering

EBE Team

Credits:

Empirical results Grigori Melnik, Sebastian Martel

MASE Core Harpreet Bajwa, Thomas Chau, Lawrence Liu,
COACH-IT Kris Read

MASE KM Thomas Chau, Harpreet Bajwa, Lawrence Liu
Emerging design Carmen Zannier

OBR Philip Nour

P2P Seth Bowen

TDD Harpreet Bajwa, Chris Mann, Wenliang Xiong,

Carmen Zannier
Lightweight KM Lawrence Liu

Research Web site: http://sern.ucalgary.ca/~milos

Kris Read

T e
B e b b i

*| - el i I = oo- '8

.ﬁ_l'r.'_-_-ﬁ.bl—- e =T = O g d = nJ
MASE wazE: Hain N

I._.-

Framis Sappari b dain Ssibears Toaen

L

-:-
Collaboration: maurer@cpsc.ucalgary.ca Agile Software Enginsering - 62003 EBE Group - mb e
T ———————
r & b o brrim e L
i e i £ £ T R R ey . A
s — i = T ———— i =
P G [rv—— '“T":i'.'!ﬁ:' N e | = P | T . |
7 . MASE: List Users Sy
o0 1 Main — o0 I-—L L
= j - P Liwt of wery
il - :
- e e | el —
y |
f [ry—
- e -
L) e 1
o nif e - s

Agile Software Engineering - © 2003 EBE Group

10/29/03

Agile Software Engineering - © 2003 EBE Group 10/29/03

r LN r
PR S T . g - P L R - |
o= (= =.-l e — e
- % -
— ® O O || MHASE wase:sevs P
L]
o o

1]
Wil
0l

=
Agile Software Engineering - © 2003 EBE Group 10/29/03 Agile Software Engineering - © 2003 EBE Group 10/29/03
e [] O e b RS L
L3 s e R ek ol = RO I | e -0 S ek ke e 5 - 5
- e Hillm == S e atar =amat e L
E!' w.p*n“i“ - g | AT TR LR - S [=
00 15, MasE: Craste Ttaration e 00 o MASE: Whiteboard it
——
e T T
SruiEr W@ A B .
— T
— T —_—
=
- r
4 "
e — =
r
C i
s 11 r . - "l i
[¥
L [r
» . v
. r
. r
=
r
=
— r
-r V
e '
= L] a -
' r v = —
A B S] [1
Sy o L |
Fl &l
r r — =T e
- - - L__J
- - - -
- -
Agile Software Engineering - © 2003 EBE Group 10/29/03 Agile Software Engineering - © 2003 EBE Group

10/29/03

]
1|
1]
Fomi, = i] [
Emnddeid LETTERT T h—

RN 1L 1 [r T
. i oS 1 -y
(1 T] di A T 7 P
bl NG RO I iR TR
PR A0 FOMR 0 TR O HPR OH
SR CODE] FOPEm EATR EITR PR
bmpr N TEG plile AR Eibe
[T AR O T] b il il
s [ETHCH #FOMR 2R DX =
RGNy FOrm FR ELEm O
AT T mEm LS
Ridarom foul R b -y =y
ot 5 L R = e =
bmase LLL3SGE RGO EL] ¥ 1
R 4 12000 W% " L T
SR L SE FOm e r '
T AR T L] e ¥
AL] L T N
TN N T T 1 1M &M
L UL Foom - A @

Fo i L

POy (L] L]

|

Agile Software Engineering - © 2003 EBE Group

=2
- -
10/29/03

Tk Trwedm

Froves

Has e W

[T [~ W s

[T — |
-]

B et Fr=Tm—_ H frn

e L =] "

i |

Vet Buleade i B W W

L ml

(R] i

Frapibwmmps [

al

i e

|

o i, o 's

"

l

Agile Software Engineering - © 2003 EBE Group

1]
Wil
1]

10/29/03

gl PO
(23 (5] T3 1
o [¥ [T 1
F [5] * Wi 1
EF L&) f] g [L]
B L L] (L] J
T L L] r [T-] bl
(13 [£] T BE d
FF f] TR [FEY F-1 Y
i |
Amnlaide [eEad Cefd Cimmil e
Hasars (BT Ivrmeiry arame
(-1) na 41 me - o

Ferrines Febad s ol

e deied Tl ok] e il =L 1
St b0y STLAHD B o e

el S e E B R

B
B
(]
1]
L]

B

v

[L=
E] i

Agile Software Engineering - © 2003 EBE Group

10/29/03

Vi 0 I CRPOB I 13 BN Co S I L 0 L ik I s o o ity gt 0 48
T

i g i s oo o g P g s 1oy o 5 1 10 ey -

T2 LTS

L1 [—

.

S

[,
[

Agile Software Engineering - © 2003 EBE Group

10/29/03

MASE: Link Ato B

N L

s e ol chrrdF b fars

u & Mne
o 11

T ax

Ll L

i il

el 3 GO0 3BT 50 S ey il

bl brarrd
P

e bt st ot

MASE: Link Ato B

] deithrsstiCokrmifidies

0 L]

4 a4

a 2 e s
3 mrar

] ad

i naTaawiaas

. v Db
1 Bl
"
BTl e
L] 8 hai
a iL 3
e by =AEY
ML L

b AR L

el b
[

Agile Software Engineering - © 2003 EBE Group 10/29/03 Agile Software Engineering - © 2003 EBE Group 10/29/03
00 MASE: Link Ato B P 00 MASE: JCVS gt

==
(=]

e e |

[®
el

e

e, T v marni

T

i

| L7 I

=] n w0
EFIT Engoxiable

HES R ANET, TRTERR O e T COPeTan (rrailing st mai v 51 4Our dHpaasl. &
QTR W E Sl #E D DR TR

T

Agile Software Engineering - © 2003 EBE Group

10/29/03

e e e

HOAE Pty (T Paps Tl

Weu Teresizew

2 Y CEr L O 0 L) ST
1 PFri Ok b3 GE T LT ST
i Fri Ok ol del J 200G
2 P CAT D L T
2 P Ok D3 OGEIEELD SDO3

Agile Software Engineering - © 2003 EBE Group

10/29/03

—

s

MASE mase: scvs

e Y

L0k Brotecty TawPied Aralis ! KinTestZ s

Erahre Fia | e pamg—

Dl Braedh:

By 13 ANGMAT OF 2R Ty Ot el
ks Py 1.3 3 =TT

VO ety g TeagE Y
SO0 R0 DA By Gl el
(111Y B 1.1 SETE ~ 1K
gty o e
Exdsimn 1] AO000VHA 0ESA00 by ek a1
9 ETEl by TR S0

Pt B D | 4 0 T

Agile Software Engineering - © 2003 EBE Group

-]:! E& MASE: JCVS

titram wmomb e

HCAR Troimchy STaptPapd S Tandl § KrisTueTl war

il brarrd
P

WA Conpoee T e el mn I

Doyt Broweche
Hissnn 1 SO0 T o ra ki 'h-l:ﬂdﬂ
[Hln ayw |3 -1T

AR gy g g Tt

HisSiann 1.0 SO0 T 0500 by i BRaL

(e[myw || a1
"R gy kg memage

Hissiieh 1,0 SOOGS0 LA by il BT
UEE Ty W e

e i il 2 £ 8 T o e

1]
Wil
1]

10/29/03 Agile Software Engineering - © 2003 EBE Group 10/29/03
00 .]:!ig MASE: Kris Read] o0 .]:!!g MASE: Kris Read |

iraE me mE et e A

Kils's Sawdbon
This iy tra persorsal paredbes For chevs opar B Baed

e i G B O] el '\.-w-:"..-" ey Y, AT, R0 O Wl COAR T
wi l b purdorree] gl by chpdorvwsl. D el Hion, sach oan oondein B oy bt i baris

[atfag) e o T | SoraTaags g (iaTaant ja
D] S R LA S LT e (R T
rﬁrugghmm Ay Tl o (KrNTam2 s
Prajeci SEalus
Archizaciure

T g b b ey
n i ErsTast] o

ErinTawZ war
L& [T

ket g G S DRGSR O s

Agile Software Engineering - © 2003 EBE Group 10/29/03

iR e et e R

Kils's Saidlox
Thin i tra parsorsal saredbes: For devn lopar B e

Bahie 15 & B O 511 Sl b DO D Ol 0T LA, S50 O el COADReTE
wi I b prlerel al by dipdorywdl. I addi Lo, soch oo ool piny B oy bl Tiehars

Lravgaaesals.
[Eafopal e o a T ot drmTaagy Sy anaTaain Jars
D] IS L LA s T (R T
rﬂ!ﬁg g Tyl S g Tap S e (e aToim 2 i)
Prajact SEalun
Archinaciure
T i gt
rrepErd ErieTesfl jor

il BrinT et Z mar
bir& Lirdaiol

el g LC SR B J T BT oy AL

Agile Software Engineering - © 2003 EBE Group

10/29/03

.]:Hg MASE: FIT Extensions

i P ¢ m e

This fmein the Uinivrrsiy ol Calpery Loy Bl

T B A s
1w] LA
by wedatal Bmrvrg of B whorviond sl
Trcdedars mechlimld] TETITLE I B TR s Froosmsing = Tis
mibaTi
ek pewanElster Johnman, FaiE sgeen

= Chi ld, Liwran, o s

e ik perwcrenl e O id, L

e

:,,.__'."H_ T e o ghrpds proesgie anaarch

E\-::u-.-r-_ SR il b rhe | chesckold, Dal RGRJE (PUENRR. SRRy SR

=l T B Al P g
whart A Dooglefidhey
e a Scliows Jewa IDE VRS2
wbami

ek T, T ul

=2
- -
10/29/03

Agile Software Engineering - © 2003 EBE Group

.]:! E& MASE: FIT Extensions T

ke P ¢ e i e

] This ok the Uiy ol Calpery Lbrorey Sl
T B s
1T] LA
i weridatal Bpevrg of B wiorviond il v
fidededars mchlimld | TETITLE I L~ Tils: Procemsing = Ti's
wiaTi
ek pmanslsshor | Johreon, Fela
ek PRl [, Lsenen
-
eyl T i, o TS e asoachi
—
By I [l b Ve | il Dal Qe (RS ity
e
e Vi, B Pl e
== miart A . Coog efidhrs
i et q Echions Jaea [DE MRSE
mibaTi
e T T 1
Aghed [P rotom B0 T MO T Oy arsas

1]
Wil
1]

Agile Software Engineering - © 2003 EBE Group 10/29/03

