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Naive Bayesian Classification
of Structured Data

 Motivation and background

 1BC

 1BC2

 Comparison

Peter Flach, U. of Bristol & Nicolas Lachiche, U. of Strasbourg

ILP’99, ILP’02, ICML’03, Machine Learning 57(3):233-269, 2004
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Motivation: upgrading naive Bayes

 Bayesian classifier:

 Propositional naive Bayes assumption:

 1 to n: P(d|c)?
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E-R model
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ISP declarations

--INDIVIDUAL
mol 1 mol
--STRUCTURAL
mol2atom 2 1:mol *:atom
from 2 1:atom *:bond
to 1:atom *:bond
--PROPERTIES
class 2 mol #class
element 2 atom #element
atomtype 2 atom #type
charge 2 atom #charge
bondtype 2 bond #bondtype
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Flattened representation

class(d1,mutagenic).
mol2atom(d1,d1_1).
mol2atom(d1,d1_2).
...
element(d1_1,c).
atomtype(d1_1,22).
charge(d1_1,-0.117).
...
from(d1_1,d1_1d1_2).
to(d1_2,d1_1d1_2).
bondtype(d1_1d1_2,7).
...
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1BC

 Upgrades attributes to first-order features

 Recursively follows the type structure
 either a property of an object O, or a first-order

feature of an object O’ related to O through a
structural predicate

 propositionalisation
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First-order features

 First-order feature is conjunction of literals such
that
 one free global variable denoting the individual
 each (binary) structural predicate introduces a new local

variable and uses either the global variable or a local
variable introduced by other structural predicates

 properties do not introduce new variables
 all variables are used at least once
 bounded number of literals and variables
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Elementary features

 Elementary features: one property per feature
 lumo(M,-1.246)
 mol2atom(M,A),element(A,c)
 mol2atom(M,A),from(A,B),bondtype(B,7)
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1BC: dynamic propositionalisation

 Learning
FOR each value f of each feature F

 Classification

getConditionalLikelihood(i) {
FOR each class c
    CL[c] = 1
FOR each feature F
    let f be the value of F for i
    FOR each class c
        CL[c] = CL[c] x estP(f|c)
RETURN CL}
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Using likelihoods for classification

 Requires decision rule, e.g., setting a
threshold on the likelihood ratio
 Bayesian: predict positive if

 or threshold posterior:

 This only makes sense if the likelihood ratios
are calibrated
 not true for naïve Bayes because of unrealistic

independence assumptions
 i.e. ignore the prior, and learn the optimal

decision threshold from data!
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Uncalibrated threshold

True and false positive
rates achieved by
default threshold
(NB. worse than
majority class!)
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Calibrated threshold

Optimal
achievable
accuracy
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n>2 classes: a simple 1-vs-rest approach

 From thresholds to weights:
 predict argmaxc wc P(x|c)
 NB. two-class thresholds are a special case:

 w+ P(x|+) > w– P(x|–) ⇔ P(x|+)/P(x|–) > w–/w+

 Setting the weights (Lachiche & Flach, ICML’03)
 Assume an ordering on classes and set the weights in

a greedy fashion
 Set w1 = 1
 For classes c=2 to n

• look for the best weight wc according to the weights fixed so
far for classes c'<c, using the two-class algorithm
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3

1 2

Example: 3 classes

(0,0,1)

(1,0,0)

(0,1,0)
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1BC2

 Upgrades the naive Bayes assumption from
tuples to collections formed by one-to-many
relationships

 e.g., collection of atoms appearing in molecule

 Need to model probability distributions over
collections
 we considered lists, multisets and sets
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What’s wrong with bit-vectors?

 Represent a collection by a tuple of bits, one
for each domain element
 aka propositionalisation with existential features

 Only works for finite domains

 Defines probability of a collection in terms of
its extension and its complement
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Unigram list SLP

0.2: element(a).
0.3: element(b).
0.5: element(c).

0.28: list([]).
0.72: list([H|T]):-element(H),list(T).

 all permutations equi-probable
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Unigram list SLP (alternative definition)

 all permutations equi-probable

0.2*0.72: element(a).
0.3*0.72: element(b).
0.5*0.72: element(c).
0.28: element(stop).

list([H|T]):-
element(H),
( H=stop    -> T=[]
; otherwise -> list(T)
).
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Bigram list SLP

0.05: pair(a,a).
0.10: pair(a,b).
...
0.15: pair(c,c).

0.28: listp([]).
0.20: listp([X]):-element(X).
0.52: listp([X,Y|T]):-pair(X,Y),listp([Y|T]).

 [a,a,b,a] and [a,b,a,a] equi-probable
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1BC2 list distribution (unigrams)

 Alphabet A = {x1, …, xn} with prob.dis. PA
 probability of empty list is τ

 Equivalently: alphabet A´ = {ε, x1, …, xn}
 PA´(ε) = τ, PA´(xi) = (1-τ)PA(xi),
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From lists to multisets

 Idea: view a multiset as the equivalence class of
all lists consisting of its permutations
 ki  denotes number of occurrences of xi

 gives same results as list distribution for naïve
Bayes classification since #permutations only
depends on instance to be classified, not on class
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From lists to sets

 Distribution over sets
 sums up the probabilities of all lists containing each

element of the set at least once, and no other
element

 only takes the elements occurring in the set into
account, in contrast to bitvectors

 necessarily exponential in the cardinality of the set
 can be approximated by the list distribution for

large domains
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1BC2 set distribution

 Idea: view set S of cardinality l as equivalence
class of lists of length at least l containing all and
only elements of S
 PA´(S) denotes Σx∈S PA´(x)

 cumulative prob. of lists of length at least l containing
only elements from S is
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 PSS(S) ~ l! Pli(S) if PA´(S) is close to 0
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1BC2: main approach

 Recursively follows the individual structure:
 the estimated probability of an individual i is the

product of
 the estimated probability of its properties and
 the estimated probability of the collection of

objects i’ related to i through a structural predicate
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1BC2: Learning phase

 Estimate probabilities of each property for
each class
 e.g. carbon atoms belonging to mutagenic molecules

 Estimate probabilities of empty collections
(MLE):

 e.g. average number of atoms in molecules = 4
 --> τ = 0.2
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getConditionalLikelihood(individual i)→ CL

FOR each class c, CL[c] = 1 /* initialisation */
FOR all properties prop of i except class
    Find parameter value v such that prop(i,v) is true
    For each class c, CL[c] = CL[c] x estP(v|c)
FOR all structural predicates struc involving i
    IF struc is functional given i THEN
        Find the related individual j
        CL' = getConditionalLikelihood(j)
        FOR each class c, CL[c] = CL[c] x CL'[c]
    ELSE /* non-determinate struc.pred.*/
        Find all related individuals J
        FOR each individual j of J,
            CL''[j] = getConditionalLikelihood(j)
        FOR each class c,
            CL[c] = CL[c] x composeP(CL'',tau,c)
RETURN CL
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Comparison

1BC 1BC2
Counts Individual Objects
Cardinalities No Yes
Repetitions No Yes
Properties Satisfied and 

non-satisfied
Satisfied only

1 to n Bitvector Distributions 
over collections
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Experimental evaluation

 Artificial datasets: 1BC2 outperforms 1BC
 cardinality of collection
 distribution of elements of collection
 requires more data to estimate these probabilities

reliably

 Benchmark ILP datasets
 Both perform comparably to other ILP systems



22 March, 2005 Bari seminar 3-4 29

Example: training and test data

 Positive examples
 {(o,22),(c,14),(o,21),(o,22),(n,38),(h,9)}
 {(h,9),(o,22),(o,22),(n,38),(h,9)}
 {(o,21),(o,22),(c,14),(h,9)}

 Negative examples
 {(c,14),(c,17)}
 {(h,9),(o,22),(c,14)}
 {(o,22)}

 Test individual
 {(o,22),(c,17),(h,9),(h,9),(h,9)}
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Example: conditional probabilities

positive negative positive negative
mol2atom(M,A),element(A,c) 3/5 3/5 3/19 4/10
mol2atom(M,A),element(A,h) 4/5 2/5 5/19 2/10
mol2atom(M,A),element(A,n) 3/5 1/5 3/19 1/10
mol2atom(M,A),element(A,o) 4/5 3/5 8/19 3/10
mol2atom(M,A),type(A,9) 4/5 2/5 5/21 2/12
mol2atom(M,A),type(A,14) 3/5 3/5 3/21 3/12
mol2atom(M,A),type(A,17) 1/5 2/5 1/21 2/12
mol2atom(M,A),type(A,21) 3/5 1/5 3/21 1/12
mol2atom(M,A),type(A,22) 4/5 3/5 6/21 3/12
mol2atom(M,A),type(A,38) 3/5 1/5 3/21 1/12
Tau N/A N/A 1/6 1/3

1BC 1BC2
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Example: classification

 1BC
 positive: 3/5 x 4/5 x (1-3/5) x 4/5 x 4/5 x (1-3/5) x

1/5 x (1-3/5) x 4/5 x (1-3/5) = 1.3 10-3

 negative: 3/5 x 2/5 x (1-1/5) x 3/5 x 2/5 x (1-3/5) x
2/5 x (1-1/5) x 3/5 x (1-1/5) = 2.8 10-3

 1BC2
 P((o,22)|+) = 8/19 x 6/21 = 48/399
 P((c,17)|+) = 3/19 x 1/21 = 3/399
 P((h,9)|+) = 5/19 x 5/21 = 25/399
 positive: 1/6 x 5/6 x 48/399 x 5/6 x 3/399 x (5/6 x

25/399)3=1.5 10-8

 negative: 8.1 10-9
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Conclusions

 1BC2: treats collections of objects as first-class
citizens

 Recursive implementation order of magnitude
faster than straight propositionalisation
 now also available for 1BC

 Both approaches available in single system
 discretisation
 cross-validation
 ROC optimisation of decision threshold


