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Support vector machines

Wide margin classifier

support vectors are the datapoints closest to the
separating hyper-surface

Kernel: (implicit) transformation to feature
space

to deal with problems that are not linearly
separable in input space

feature space is often high-dimensional



Primal and dual form

Linear classifiers construct a hyperplane
separating the input points

decision rule h(x) = sgn(<w : X> + b)
hypothesis W= > a,V;X,
equivalently  h(X) = sgn( ioc,.y,.<x,. ' X> + b)

where a; represent hypothesis in dual co-ordinates



Kernels

Learning in feature space:

h(x) = sgn( 3. v, (9(x,)- ¢(x)) + b)

A kernel calculates the inner product directly
in input space: k(x,z) = <¢(x)- g/)(z)>

“similarity” between x and z in terms of features ¢



Valid kernels

A valid kernel k(x,z) is symmetric and positive
semi-definite (Mercer’s theorem):

Vn=0,VYc,...c,ER: Ecckx X,)=0

i,j€E{1,..

In that case, the left-hand side of the inequality can
be interpreted as a linear combmation of feature

vectors: 3 cck(x;, x;) HEcqj




Our approach

Individual-centred domains: structure within
but not between individuals

Represent individuals by terms in a higher-
order logic

Default kernel is defined recursively on type
signature of individuals

Can be adapted to domain by modifiers and
domain-specific kernels on atomic terms



Basic terms (aka ground terms)

e e ——

DEFINITION 3.1 (Basic terms). The set of basic terms, *B, is defined induc-
tively as follows.

1. If C is a data constructor having signature 61 — --- — 6, — (I ay ...ax),
floo..stn€B (n=0),andtisCty...ty € L, thent € B.

2. Ifty,....t, €B,51,....5, €B (n>0), s «Dandtis
hx.if x =t then sy else ... if x =ty then sy else 5o € L,

thent € 8.

3. Ift, ... .tn B (n=0)andtis (t,....ty) € L, thent € B,
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Kernel for basic terms

- — e g . B —= e

DEFINITION 4.1 (Default kernel for basic terms). The function k: 5 x°B —
R is defined inductively on the structure of terms in *B as follows.

1. Ifs;t € By, where o.=T 0 ...0, for some T',0,...,04, then
7 (C.D) ifC 4D
k(s,t) =4 . . _
kr(C,C)+ Zk(gi-,rg) otherwise
\ i=1

where sisCsy...spandtisDity... ty.

2. Ifs,t € By, where o= — v, for some B, v, then

k(s,t)= > k(V(su),V(tv))- k(u,v).
uEsuUpp(s)
vesupp(t)
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Kernel for basic terms (cont.)

S =— —_—
= = e L — s o= e

3. If s,t € By, where 0. = 0 x - x Uy, for some Oy, ...,0, then
M
k(s,?} = Zk{sf,ﬁ},
i=1
where s is (51,...,5y) and t is (t1,...,1y).

4. If there does not exist oo € &€ such that s,t € B, then k(s.t) =0.
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Example for simple lists

— - = — S — —
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EXAMPLE 4.1 (Default kernel on lists). Let M be a nullary type constructor
and A,B,C,D : M. Let # and || be the usual data constructors for lists. Choose
Ky and Kpjs; to be the matching kernel. Let s be the list [A,B,C| € Bris m,
t =|A,D)|, and u = |B,C|. Then

k(s.t) = Kpist((#), (#)) + k(A,A) +k([B,C], [D])
— 1+ k(A A) + Kzist(#), (#)) +k(B, D) +k([C], ]}
— 141+ 1+ ku(B.D) + kzise((#).]])
=3+040
= 3.

Similarly, k(s,u) =2 and k(t,u) = 3.

24 March, 2004 Bari seminar 6 10



Example for simple sets

T —
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EXAMPLE 4.2 (Default kernel on sets). Let M be a nullary type constructor
and A,B,C,D : M. Choose Kpr and Kq to be the matching kernel. Let s be the
set {A,B,C} € By_.q,t ={A.D}, andu= {B,C}. Then
k(s,t) =k(AAK(T, T)+k(A,D)(T, T)+k(B,AK(T,T)
+k(B,D)k(T, T)+k(C,AK(T, T)+k(C.D)(T, T)
= Ky (A, A) +Kp(A, D) +xp(B,A) + Ky (B, D)
+ Ky (C.A) +xy(C,D)
=1404+04+04+0+4+0
= 1.

Similarly, k(s,u) =2 and k(t,u) = 0.
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Example for simple multisets

T —
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EXAMPLE 4.3 (Default kernel on multisets). Let M be a nullary type con-

structor and A,B,C,D : M. Choose Ky to be the matching kernel, and Ky, to
be the product kernel. Let s be (A,A,B,C,C,C) € Byy_.Na: (i.e., 5 is the multi-

set containing two occurrences of A, one of B, and three of C), t = (A,D.D),
and u= (B,B,C,C). Then

k(s,t)=k(2,1)k(AA)+k(2,2)k(A,D)
+k(1,1)k(B,A)+k(1,2)k(B,D)
+k(3,1)k(C,A) +k(3,2)k(C, D)
=2x14+4x041x04+2x043x04+6x0
= 2.

Similarly, k(s,u) = 8 and k(t,u) = 0.
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Modifiers

B T S e P,
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By default, no modifier is usegl. ..,
Kdeault(K)(x, x7) = k(x, x").
Instead, a polynomial version of the default kernel can be used:
Kpolynomial (P, D(K)(x, x') = (k(x,x") 4+ DP. (=0, peZ™)

Or a Gaussian version:

Kgauﬁsiaﬂ(}")(k)(xs I;) = ¢~V D=2 O] (y = 0)

Another frequently used modification is the normalisation kernel:

kix,x"
VRO, 0Ok, X7y
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Knormatized (K)(X , X I) —




Example: East-West challeng

= T e - B e

eastbound :: Train -> Bool

type Train = Car -> Bool with modifier gaussian 0.1
type Car = (Shape,Length,Roof,Wheels,Load)

data Shape = Rectangle | Oval

data Length = Long | Short

data Roof = Flat | Peaked | None wi nel
type Wheels = Int with kernel(@EEE;:i;§:§5E2>
type Load = (LShape,LNumber)
data LShape = Rectangle |EEEEle/}/Té;a-.
type LNumiii/j/;;:,f— ¥
roofK :: Roof -> Roof -> Real
roofK x x = 1

ks(x,x") = L it = roofK Flat Peaked =
e 0 otherwise roofK Peaked Flat =
roofK x y = 0

o O
o
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From kernels to distances

DEFINITION 5.1 (Distances from kernels). Let k: X x X — R be a kernel
on X. The distance measure induced by & is defined as

= /k(x,x) — 2k(x,x’) +k(x',x')

PROPOSITION 5.2 (Valid kernels induce pseudo-metrics). Letk: X x X —
R be a kernel on X, and let dy : X x X — R be the distance induced by k. If
k is positive definite, then dy is a pseudo-metric.
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Examples of distances

— — = — —
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EXAMPLE 5.1 (Default distance on lists). We continue Example 4.1, with
s = [A,B,C|, t = [A,D)|, and u = [B,C|. We have k(s,s) =17, k(t,t) =5, and
k(u,u) = 5. Then, dy(s,t) = \/k(s,s) — 2k(s,t) + k(t,t) = /T —6+5=2.45,
di(s,u)=+/T—44+5=2.83, and di(t,u) = /5—6+5=2.

EXAMPLE 5.2 (Default distance on sets). We continue Example 4.2, with
s=1{A,B,.C},t={A,D}, andu={B,C}. We have k(s,s) =3, k(t,t) =2, and
k(u,u) = 2. Then, di(s,t) = /3—-242=173, de(s5,u) =3 —-4+2=1,
and dy(t,u) = /2-04+2=2.

EXAMPLE 5.3 (Default distance on multisets). We continue Example 4.3, with
s=(A,A,B,C.C.C),t={A.D.,D), andu= (B,B,C,C). We have k(s,5) = 14,
k(t,t) =35, and k(u,u) = 8. Then, dr(s,t) = /14 —4+5 = 3.87, di(s,u) =
V14— 1648 =2.45, and di(t,u) = /5—0+8 =3.61.
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Application: spectroscopy

B T, —m

e e = = === 23

The dataset consists of 1503 spectra of diterpenes, classified into 23 dif-
ferent classes according to their skeleton structure as follows (number of
examples per class in brackets): Trachyloban (9), Kauran (353), Beyeran (72),
Atisiran (33), Ericacan (2), Gibban (13), Pimaran (155). 6.7-seco-Kauran (9).
Erythoxilan (9), Spongian(10), Cassan (12), Labdan (448), Clerodan (356),
Portulan (5). 5.10-seco-Clerodan (4), 8,9-seco-Labdan (6), and seven classes
with only one example each.

type Spectrum = Frequency -> Multiplicity
type Frequency = Real with modifier gaussian 0.6
data Multiplicity = s | d | t | g | 0 with default 0

Table II. Classification accuracy (in %) on diterpene
data

ForL Icr. TiLpe RiBL KES DES

16.5 653 8l.6 865 947 97.1




Feature-space PCA

e AT .
e =
—- - —
e =
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Application: spatial clustering
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Figure 2. Plots of households spatially clustered with different parameters (left: 0.1, right: 0.02). Spatial com-
pactness increases as the parameter is decreased.

type Neighbourhood = Coords -> Statistics
type Coords=(Real,Real) with modifier gaussian 0.1
type Statistics = (Real,Real,...,Real)

with modifier normalised
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