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Neurofuzzy systems:
a general view

Design 
objectives

Architectures
Learning schemes

accuracy
interpretability

Rule-based systems
Structural and parametric learning

FUZZY SETS
Available

data

NEURAL NETWORKS

Fuzzy Models: 
General Architecture

Experimental
data

User

Experience,
Domain knowledge

W

Logic processing
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General Topology

 

LOGIC 
PROCESSING

INTERFACE 

INTERFACE 

Rn  [0,1]c

[0,1]p Rm 

Fuzzy and Fuzzy Models: 
Development Guidelines

Accuracy

Interpretability

Nature of data

Computational effort

Generalization abilities

W

Logic processing

W

Logic processing

W

Logic processing
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Fuzzy Modeling: Rationale

User/data analyst

Model
Source of

data

Domain knowledge

•User’s preferences
•Transparency of model
•“What-if” analysis available
•Accuracy-interpretability
•Relevance analysis (generalization..)

Logic Processing

Interpretability and transparency of 
results

Ability to accommodate and calibrate 
prior domain knowledge

Transparency – Plasticity (learning) 
tradeoff 
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Logic and Computing

… we have seen how this leads to a lower 
level of arithmetical precision but to a higher 
level of logical reliability: a deterioration in 
arithmetic has been traded for an 
improvement in logic…

John von Neumann, 1958

Logic networks

S.A. Kauffman, Metabolic stability and epigenesis in randomly
connected nets, J. Theor. Biol. 22 (1969) 437-467.

Qualitative modeling 
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Logic expressions

(Logic) connectives 

Logic expressions 
•variables
•operators

Information granules

W = L(A, B, C… , connectives, a )

parametersInformation granules

Triangular norms
(t- and s-norms)

t-norm: AND operation

Generic models of logic operations in fuzzy logic

s-norm: OR operation

Correspondence principle
if  [0,1] replaced by {0,1}

logic operators of two-valued logic
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OR Neuron
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OR Neuron- characteristics
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weights

w=[0.7  0.6]
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OR Neuron- boundary cases

]txw[Sy ii

n

1i=
=

All weights are equal to 1   y = OR(x1, x2, …, xn)

Some weights are equal to 0 elimination of respective 
variables

From OR gates to OR neurons 

wi =1

xi =1 or 0
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AND Neuron

1x
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y

1w

iw

nw

neuron AND

]sxw[Ty ii
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=

AND Neuron- characteristics

]sxw[Ty ii

n

1i=
=

w=[0.7  0.6]

ANDD ANDD
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AND Neuron- boundary cases

]sx[wTy ii

n

1i=
=

All weights are equal to 0   y = AND(x1, x2, …, xn)

Some weights are equal to 1 elimination of respective 
variables

From AND gates to AND 
neurons 

wi =0

xi =1 or 0
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Fuzzy Neurons and Digital 
Systems

and and,

w=[0  0]

AND

or or,

w=[1  1]

OR

Generalizations of 
fuzzy neurons

Augmented logic operators

• ordinal sum 

•uninorm

•OR/AND neurons
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Ordinal sum

1

1

min

t1

t2

t3

Generalized OR neuron

wi
xi

Ordinal sum – aggregation
of xi and wi
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Uninorm

U: [0,1]2 [0,1]

(a)Commutativity
(b)Monotonicity
(c)Associativity
(d)Identity g in[0,1] such that u(x,g)=x

Uninorm

U: [0,1]2 [0,1]

0 1

1

g

g

t

s

Min (max)

Min
(max)















∈+

≤

=

otherwise y),max(x,or  y)min(x,

[g,1]y  x,if ),
g-1
g-y ,

g-1
g-xg)s(-(1g

gy  x,if  ),
g
y,

g
xgt(

y)u(x,



14

Uninorm: two developments

 

t-norm 

s-norm 
Ω 

Ω 

x 

y 

1 

1 

g 

g 

min 

min 

 

t-norm 

s-norm
Ω 

Ω 

x 

y 

1 

1 

g 

g 

max 

max

and-dominated or-dominated

Unineurons

y = u(or(x1,w1), or(x2,w2),….,or(xn,wn),g)

y = u(and(x1,w1), and(x2,w2),….,and(xn,wn),g)

 
u(….,g)

     wi 
 {L1, L2} 

xi 



15

Unineuron [UNI-AND]

y = u(and(x1,w1), and(x2,w2),….,and(xn,wn),g)

g=0.3 g=0.6

OR/AND neuron

 

OR 

AND 

OR
x 

y 

z1 

z2 

OR/AND
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OR/AND neuron-
characteristics

t: min, s: max

OR/AND neuron-
characteristics

t: product, s: probabilistic sum
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OR/AND neuron-
characteristics

t, s: Lukasiewicz connectives

OR/AND neuron:
concept generalization and refinement

 

OR 

AND 

OR
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OR/ANDf 
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generalization

Concept “f” generalized by “d”

1

1
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OR/AND neuron:
concept generalization and refinement

Specialization (refinement)

Concept “f” specialized by “d”
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Referential Computing
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REF
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“included in” 
x is included in a

“dominates”
x dominates a

“similar to”
x is similar to a

Referential logic predicates

Binary Inclusion threshold operation
acceptance decision (in classification)
warning signal (sensors)
…..

Continuous predicate of inclusion fuzzy 
threshold

partial acceptance
continuous warning signal

Referential logic predicates: 
motivation
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Binary and fuzzy thresholding

binary threshold

x included in a,   x and a   in   [0,1]

Implication ( )

Inclusion





>
≤

=⊂=→
a xif a/x,

a xif 1,
axax

[0,1]b a, b},atc|[0,1]sup{cba ∈≤∈=→
Example (t-norm: product)
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Inclusion

0 0.5 1
0

0.5

11

0

incl x 0.6,( )

10 x

a=0.6

Inclusion neuron

])swa[(x),;INCL(y iii

n

1i
T →==

=

wax

w- weights (connections)

a- reference point
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Inclusion neuron

INCL

a

Inclusion neuron

ii

w=[0 0]; a=[0.4  0.4]

ii

w=[0  0.7]; a=[0.4  0.4]
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x similar to a,   x and a   in   [0,1]

Implication ( )

Similarity

x)a)t(a(xax →→=≡

Similarity

0 0.5 1
0

0.5

11

0

tol x 0.4, 0.4,( )

10 x
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Similarity neuron

])swa[(x),;SIM(y iii
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Similarity neuron
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Similarity neuron

w=[0 0]; a=[0.4  0.4] w=[0 0.7]; a=[0.4  0.4]
sm sm, sm sm,

Tolerance neuron

TOL(x1,x2,a,b,c,d,w1,w2)= 
[tol(x1,a,b) s w1] t [tol(x2,c,d) s w2]

s: s-norm,   t: t-norm

Tolerate changes of signal if those are within some range
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Shannon expansion

Boolean function f: {0,1}  {0,1}

f(1)) AND(x   OR  f(0)) AND x(f(x)y ==

 
  f(1,1)) AND  xAND (x OR                  

f(1,0)) AND x AND (x OR                  
f(0,1)) AND  xAND x( OR                  

    f(0,0)) AND x AND x()x,f(xy

21

21

21

2121 ==
f: {0,1} 2 {0,1}

Shannon expansion

Boolean function f: {0,1}n {0,1}

TERMSSUM_OF_MIN)x,...,x,f(xy n21 ==

 

  xAND ... AND   xAND   xM

....
x AND AND...  x  AND x  M

minterms

n2112

n210

n =

=

−
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Realization of Boolean 
functions (combinational 
systems)

xi =1 or 0

Shannon expansion - fuzzy 
function

f: [0,1]n [0,1]

) t w(M s... ) t  w(M s )   t  w(My
12121100 nn −−

≈

AND  neurons

Canonical representation
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Logic Processor

neuron OR

neuron OR

neuron OR

1y

jy

my

neuron AND

neuron AND

neuron AND

1x

nx

nx

minterms  dgeneralize sum logic     

Logic Processor-dual 
structure

neuron AND

neuron AND

neuron AND

1y

jy

my

neuron OR

neuron OR

neuron OR

1x

nx

nx

maxterms  dgeneralize naggregatio-and logic     
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Logic Processor- learning

neuron OR

neuron OR

neuron OR

1y

jy

my

neuron AND

neuron AND

neuron AND

1x

nx

nx

minterms  dgeneralize sum logic     

Typically: gradient-based learning
update of the connections of the neurons

backward propagation of error

Structural optimization:
Number of nodes (AND neurons) in hidden layer

Specific model of t- and s-norm

Shannon expansion –
multiplexer  realization

x

f(1)) AND(x   OR  f(0))  AND x( f(x)y ==

y
f(0)

f(1)
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Fuzzy multiplexer

x

)c(x t   s  )c t  x( y 10=

y
c0

c1

FMUX

Network of fuzzy multiplexers

xi

) x..., , x,f(x y n21=

y

c0

c1

FMUX
FMUX

xj

xl
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Network of fuzzy multiplexers:
design

xi

y

c0

c1

FMUX
FMUX

xj

xl

Selection of variables-
dimensionality reduction

Optimization of constants
(c0, c1, …)

Heterogeneous logic network

AND neuronsReferential neurons OR neurons
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Heterogeneous logic network

AND neuronsReferential neurons OR neurons

 

REF
AND ORτ 

[h] [m] 

[1] 

Linguistic
modifiers

Linguistic modifiers

½  - more or less (dilution effect) 
0 - unknown  
1 – true (neutral) 
2 - very (concentration effect) 
4 - very (very) = very 2 (strong concentration effect) 
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Examples

x1

y 

x1

y 

 

y 

1 

OR 

REF 

x1

x2

Combinational & Sequential 
Fuzzy Systems

Static dependencies fuzzy neurons

Fuzzy logic logic network 

Dynamic dependencies fuzzy neurons and fuzzy flip-flops

Fuzzy sequential logic logic network 

•FUZZY FLIP-FLOPS
•DESIGN
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Fuzzy JK flip-flop

Next state equation

Generalization: 
inputs (J,K) and state (Q,Q+) in [0,1]
use of t- and s-norms

QKQJQ +=+

tQ)K( )sQ(JtQ =+

J

K

Q

Fuzzy JK flip-flop:
characteristics

t-norm, s-norm: Lukasiewicz connectives

z z,

K
J

Q+

Q=0.2

K
J

Q=0.5
z z,

K J

Q=0.8

z z,
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Fuzzy sequential model

Fuzzy neural
network

Fuzzy neural
network

Fuzzy flip-flops

Fuzzy State Machines

Concluding Comments

Fuzzy logic networks as structures of knowledge representation 
and learning

Transparency of networks, diversity of logic operations,
and their plasticity 

Learning involving mechanisms of neurocomputing and 
evolutionary optimization 


