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image processing

i Information granules and

Images > perception and understanding
Meaningful entities
(objects)

GRANULATION OF SPATIAL INFORMATION

understanding

& Images: from processing to

User,
Symbols UNDERSTANDING Decision-maker,
Designer,...

RELEVANCE
FEEDBACK

Numeric information
(pixels) and processing

Numbers




From images to their
i interpretation

Reconciliation -bridging
numbers and symbols

G GRANULAR
ranular constructs COMPUTING

IMAGE PROCESSING
(segmentation, filtering,edge
detection...)

Images
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‘ Time series - examples
x(t)

WAV
V

t

x(t+1) = f(x(t), x(t-1)) x(t+1) =a, + a;x(t-1) + a,x(t)




oal-oriented models of
e series

Visualize dominant temporal relationships

Provide a qualitative description of
interesting dependencies

Compare several time series-
are they qualitatively similar?

Context (task) dependent
User driven
Goal and user-centric models

Granular(fuzzy set-based) time

iseries

Time series-1

Time series-3




Granular Computing

i Granular Computing

Information granules as semantic entities
Information granulation

Formal frameworks




i Information granules

Semantically meaningful entities composed of elements
drawn together on a basis of

similarity,
functional closeness,
spatial neighborhood, etc.

and regarded as generic elements in any processing
pursuits (viz. granular computing)

i Information granulation

Process of forming information granules using
domain knowledge and experimental evidence

and exploiting one of formal mathematical frameworks
(logic, set theory, fuzzy sets, probability...)
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Development of Information
Granules

Information granules:

4

Granulate data that is construct

semantically meaningful entities

supporting efficient design of
models




Numeric data and information

i granules

Numeric data

(a) abundance in time and space
(b) difficult to interpret
(c) no explicit semantics

[agenda of data mining]

i Development approaches

= Designer-centric
= Data centric

= Hybrid schemes




Development approaches
i Designer-centric

Information granules specified by
designer/user at the level of:

general type of membership functions or
membership grades at individual points

parameters of membership functions (modal
values, spreads)

number of information granules (7+/-2)
data not (explicitly) involved in the constructs
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PRESCRIPTIVE DESIGN APPROACH

Data-centric

i Development approaches

Information granules specified on a
basis of experimental numeric data

ﬂ Predominantly related to clustering (being regarded
as a basic algorithmic vehicle of forming fuzzy sets
or fuzzy relations), see Fuzzy C-Means (FCM)

ﬂ Reflects structure in data; are these clusters
semantically meaningful?

DESCRIPTIVE DESIGN APPROACH




i

Development approaches
Hybrid (knowledge-based)

Information granules are specified on a
basis of experimental numeric data and
reflect the semantics conveyed by the
designer

i

Clustering and Knowledge




Information granules and

i clustering

: information granules
Data ‘ clustering ‘ (clustes:'s)

i Clustering and Knowledge

Data centric approach ‘ clustering

‘ Knowledge-based
clustering

knowledge

Human centric approach ‘ hints




Fuzzy C-Means as Algorithmic
Framework of Clustering

= Well-developed optimization
environment — typical objective function
clustering approach

= Commonly used

= Lot of comparative studies

i Structure representati on

& how to represent clusters(groups)?

Partition matrix

N patterns

¢ groups

1001100 1
|0110000 0
100000110




i Partition matrix

10011001
01100 00 0 cluster-1: {1,4,5,8}
= 00000110 cluster-2:{2,3}
cluster-3:{6,7}
‘ Partition matrix

I ‘ 1 if x, isini-th cluster
u., =
” i 0, otherwise




$ Partition matrix
U

satisfies the following conditions :

-> u, =1 forallk=1,2,..,N
i=1

N
-O<Z:uik <N foralli=1,2,...,c

-

Family of partition matrices U

Objective function
CM (Fuzzy C-Means, Bezdek,1981)

o

M=

up lx = v [P, m>1
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U =[u,, ]: partition matrix *

m - fuzzification coefficient

Q=

i=1
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i=l k=1




;CM — detailed calculations

Use of techniques of Lagrange
multipliers to accommodate constraints
(partition matrix)

V= iuidi —x(iuik -1
i=1 i=1

oV

oV
=0, —=0s=1,2, ..¢c,t=1,2, ..,N
ou

OA

st

gCM - flow of optimization

repeat
( 1
‘ Uy = d \_: dst =|| Xt _Vs ||
E(djj
{ N
ZU?EXk
U —
i N
PIH
k=1
\

uUntil stopping criterion satisfied




iFuzzification parameter in FCM

1 g 1

0.5 | - 0.5 T 05 1

| | 1
£ 0 5 S 0 LRI

m=2.0 commonly used value

Mechanisms of knowledge-based

i clustering

Partial supervision

Proximity clustering
Context-based clustering

Collaborative clustering




Partial supervision in
Fuzzy C-Means (FCM)

eHigh number of data
«Some patterns are labeled

«How to use this information (supervision hints)
in the clustering procedure- navigation of FCM

Partially supervised FCM

Number of clusters = number of classes

Augmented objective function

(4

N c N
Q :Z ug 1%, v, P 'sz Z(uik -b,f,)* | x, - v, I
1 k=1

i=l k= i=1 =

_ /
ha

o> 0 : impact of the supervision part




* Partially supervised FCM

Q=

C

N
2 Ui % = vi P +0tz Z(u,k ~b )" Ix, - v, I

i=l k= i=1 k=1

_ J
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Partial supervision:
Optimization process

N
Q= z zuzkllxk_v I +0‘z Z(u =b )" % —vi I
= =

el ofa)
)
N
Z‘I’skxk
s =55 Vix = [ulzk +(uy, _fikbk)z
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‘ Proximity — based FCM

proximity of patterns = A

Proximity — based FCM

proximity of patterns = A




motivation

i Proximity - based FCM:

“unknown” distance function

incomplete feature space (multimedia)

Proximity measure

proximity (pattern-i, pattern-i)= 1

proximity (pattern-i, pattern-j)=
proximity (pattern-j, pattern-i)

+
&
e




Partition matrix and
proximity measure

+

Patterns “k;” and “k,” with membership grades
included in partition matrix U

plk,.k,]= Z(uikl AUy,

i=1

- ﬁ[klﬁkl]zi(uikl /\uikl)zzc:uikl =1
= plk,.k,]=plk,.k,]

Proximity — based FCM

+

ST 2
Q= Zuik 1% =i |l

V=2 > ®lk.k,]-plk, k)b, k1l x, —x |

k=l k,=I

c
plk,.k,]= Z(uikl AUy,

i=1




Optimization processes

* Proximity - based FCM:

Q= z Zuk”Xk_v I

i=l k=l

(Blk;. k,]-plk,.k, 1) *blk, k, 11 x,,

=X, |l

P
<

U(iter +1) = U(iter) —yV ,V

Proximity - based FCM:
i Gradient-based optimization

Ou (1ter) - z Z

(Z<u o A =PI,k Dbl K, Tk, K ] =

k=l k=1
N C
=2y z ul/\u )-plk,,k, )blk,,k, ]1d[k, k] Z(u Auy)
k=l k=1
0« lift=k; anduy <ug
(/J[s,t,kl,kz]=au Dy, Auy )=9 lift=k, anduy <uy
st 0 otherwise
aV N N ®

e =22 2 2 Au) Bl D) ols bk k]

k=l k=1 i=l




Proximity clustering :
Overall Optimization

roxim
FCM hints

Min V
Min Q (gradient-based optimization)

Example -
Synthetic data (1)
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Example -
& Synthetic data (2)
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i Synthetic data (3)

Proximity hints: (17 0.9), (2 6 0), (29 1), (7 12 0.9), (9 13 0.0), (8 14 0), (13 14 0), (1 2 0)
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a general perspective

i Implicit knowledge guidance:

= Proximity hints :Prox(x, y)
» Prox(x,y) equalto A
= Prox(x,y) /less than (greater than) n

= Uncertainty [entropy] hints: H(x)
« H(X) equalto A\
» H(X) /less than (greater than) u

Conditional (context-based)

i clustering

Generic task

Cluster data

Specialized task (context)

Cluster data in context A

T

Domain(problem-oriented) knowledge




Conditional (context-based)
clustering

i

Structure in a database of customers
given high income customers

U

Context A

Structure in a database of customers
given all customers

N

Y

no context

Conditional (context-based)
clustering

i

Objective function Q

context-based partition matrix

D uy =Ay,)
i=1

I

Context (A) at vy,




Conditional (context-based)

i clustering

Ccontext - as semantic filter

Focus on some fuzzy subset of data
(implied by specified context)

clustering Clustering

with context

o

Conditional (context-based)

i clustering

No contexts
. . contexts
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Partition matrix

with context
$U satisfies the following conditions :
- chuik :@ forallk=1,2,...,.N
. N
-0< Zuik <N foralli=1,2,....c

-

Family of partition matrices U(A)

;CM - flow of optimization

repeat
( N
ZU?EXk dst =|| Xt _Vs ||
v, :_kaN_
2
< k=1
u = EWQWD
Mt
5[]
\

uUntil stopping criterion satisfied




i Collaborative clustering

Design of information granules on a basis of several
disjoint sources of data

Collaborative effort under limited level of sharing of data
(communication realized at some level of information
granularity)

& Collaborative clustering

‘




Collaborative clustering
* horizontal mode

1 1 1
o

Collaborative clustering:
i horizontal mode
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Collaborative clustering:

* vertical mode

N

Np { — vl[p]/ VZ[P]:---Vc[p]
n

Collaborative clustering:
vertical mode

¢ N[

QUii] =), > uq[iildj + X i1y, > uglii] |l viliil - v

N[i] ¢

i=l =l k=l i=l

Jj#ii
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Linguistic(granular)
models

iDesign objective

Cconstruct a model at the Tevel of information
granules

User-centric constructs - the designer plays an
active role in model development

Results produced by model directly reflective
of the level of granularity of the model




Overall design

Data - a view from a certain user-defined
perspective:

Focal information granules - blueprint of model

context
fuzzy set

Input space

Context-based clustering

Given contexts (fuzzy sets) 1in output space

.

Cluster data in input space

web of information granules
(context—induced fuzzy sets)




Linguistic models

web of information granules
(context—induced fuzzy sets)

Forming dependencies between information
granules

Linguistic model:web of connections(1inks)

eneral architecture

ELLLLELLET IO

wun®® .
e

Context-based Contexts

pa rtition clusters




iﬁranular neuron (1)
N

g

Y=N(ui, ug, ..U, Wi, Wa, .., Wo) =D W, ®u,
@

iﬁranular neuron (2)

two inputs: ul =a, u2= l-a

Triangular connections: Wl and w2

output of neuron

C C C
Zaiui9zmiuiﬂzbiui
i=1 i=1 i=1




ranular neuron (3)

Linguistic network:
interpretation

output (Y) as information granule

eVisualization of possible outcomes of
the model with membership degrees

eMatching model and experimental data




interpretation

iLinguistic network:

Matching Tlevel

Y (yo) Y

\ _/
YT y

Feasibility region

*(efinement of the model

Conditional Context
clustering optimization




i Numeric experiment

y = 0.6sin(nx) + 0.3sin(37tx) + 0.1sin(57x)

B 08 0B 04 D2 o 0oz 04 06 08
X

i Numeric experiment
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Parametric studies:
fuzzification factor

No of contexts =3 No of contexts =10
No of clusters =10 No of clusters =2

No of contexts =5
No of clusters =5

Conclusions

Information granules as generic constructs supporting
functionality of human-centric systems

Knowledge-based clustering as a conceptual and algorithmic
environment for information granulation

Diversity of mechanisms of knowledge-based enhancements
of information granulation




