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Introduction

Learning as search

The data {xi ∈ Input space, yi ∈ Output space}

The search find hypothesis ŷ: Input space �→ Output space

Input space IRn, series, graphs, logical formulas

Output space IR, {0, 1}
Search space parametric spaces, others, programs

An optimization problem
Minimize F = generalization error

but F is unknown.



Introduction

Learning / Optimizing

A multi-objective optimization problem

Achieve a good trade-off between:
bias (minimize empirical error)
variance (maximize confidence in the empirical error).

Statistical learning

From multi-objective optimization to
constrained optimization (SVM)
well-posed optimization problem (SRM).



Genetic Programming wrt Non-parametric learning

Learning and the search space

• Parametric space

• Finite subspace in infinite space (e.g. SVM)

• The expert space/language (e.g. programs)



Genetic Programming wrt Non-parametric learning

In complex real-world situations, optimization becomes approximate optimization

since the description of the real world is

radically simplified until reduced to a degree of complication

that the decision maker can handle.

Satisficing seeks simplification in a somewhat different direction,

retaining more of the detail of the real-world situation,

but settling for a satisfactory, rather than approximate best, decision.

Herbert Simon, 1982



Genetic Programming wrt Non-parametric learning

Part I Evolutionary Computation

F : Ω �→ IR, Find ArgMax(F)

Aimed at ill-posed problems:

• Chaotic F

• Mixed search spaces

• Infinite search spaces

• Non computable F



EC - Introduction

“Chaotic” F

Search space : Direction finders Place the antennas

But : Maximize tolerance to noise while preserving precision.

The 3-antennas case: F = Tolerance (position of 2nd antenna)
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EC - Introduction

Mixt search space : discrete × real-valued

Search space : Optical filters
(material, thickness)1 . . . (material, thickness)N

Goal : Fit of a prescribed answer w.r.t. wavelength

Authors :
Schutz & Bäck, ICD, Dortmund.
Martin, Rivory & Schoenauer, Paris VI & CMAP.



EC - Introduction

Analog circuits

Search space : Graph + components
Transistors, resistors, capacitors, . . .

Goal : Meet specifications. e.g. Cubic root extraction

Authors : Koza et al., Stanford.



EC - Introduction

F non computable

Search space : Coffee blends

Goal : Give the clients the same aroma F = expert advice

Authors : Herdy & al., TU Berlin.



EC - Introduction

Optimization Algorithms

• Gradient-based algorithms

• Hill-Climbing

• Enumerative methods

• Stochastic methods (meta-heuristics)

Comparison

• Nature of search space

• Regularity of objective function (and/or constraints)

• Local vs global search



EC - Introduction

Stochastic methods

Select Xi ∈ Ω

According to some probability distribution

• Monte-Carlo Xi follows a uniform law

• Simulated annealing Kirkpatrick, Gelatt and Vecchi, 1983

• Tabu search F. Glover – 1977 & 1989

• Evolutionary algorithms ... since 1965

Global methods, VERY costly But often the last chance :-)



Evolutionary Computation

Contents
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EC - Roots

Evolutionary Computation — The roots

• Genetic Algorithms J. Holland, 75, D.E. Goldberg 89

AI and biology – US, east coast

• Evolution Strategies I. Rechenberg 65,73, H.P. Schwefel 65,81

Engineers – Germany

• Evolutionary Programming L. Fogel, 66, D. Fogel, 91,95

Automata and time series – US, west coast

• Genetic Programming J. Koza, 92 – a late root!

GAs on parse-trees



EC - Roots

Darwinian Paradigm

• Natural Selection survival of species adapted to the environment

• Variability parents → (seemingly?) non directed small deviations

• “Objective” survive and reproduce

• Resulting Adaptation : new species emerge
e.g. antibiotic-resistant germs

Darwin is

• Source of inspiration

• Didactic help

• Not a justification — Not a limitation



EC - Roots

Evolutionary Algorithms
The metaphor

Model : The Darwinian evolution of natural populations.
Survival of the fittest

Wording :

Individual Element X of Ω

Fitness of X F(X)

Population Π = {X1, .., XP}

Generation From population Πt to population Πt+1



EC - Roots

Process 1) Under environmental pressure,

2) individuals reproduce, recombine, and mutate.

3) After some time, emergence of fit individuals

close to the optima of F ...
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Parents Stop ?Evaluation

Initialisation

Evaluation

Mutation, ...
Crossover,

Offspring

Selection

Replacement

Best individual

Stochastic operators

"Darwinism" (stochastic or determinist)

Main CPU cost



EC - Keys

Evolutionary Computation

Conditions of use

A 0th order method
only requires F to be computable on Ω

Reserved to ill-posed problems
consistently slower than other approaches
when the latter apply

Requisite
Strong causality principle Rechenberg, 73
Else : Monte-Carlo methods
But EC can be degraded to Monte-Carlo...



EC - Keys

Key issues

• One population, not one individual
Preserve genetic diversity

• A game with incomplete information
Exploration vs Exploitation

• Relationship of the evolution engine and the fitness to optimize
Black box – or tailored optimization ?



EC - Keys

Evolutionary Computation

Components

• The representation

• The evolution scheme

• The variation operators

• Stopping criterion and Evaluation of the results



EC - Representation related issues

Representation

Genotypes — Phenotypes

Genotypes : The code space DNA
Phenotypes : The manifestation space shape, behavior

ϕ : Genotype �→ Phenotype

F : Phenotype �→ IR

Genotypic level initialization, crossover, mutation

Milieu computes Fo ϕ

Phenotypic level Selection, replacement



EC - Representation related issues

The choice of the representation

• Conditions the success a general AI feature

• Governs all genotypic operators:

– Initialization

– Crossover

– Mutation

Old days: Supremacy of binary alphabet.
refutations: Antonisse 89, Radcliffe 91

These days: customize the representation
= use background knowledge

Rationale: BK allows for exploring small relevant
subspaces in otherwise intractable spaces



EC - Representation related issues - Initialization

Initialization of the population

Draw Π0 = {X1, . . .XP }

• Uniform sampling of Ω.
Ω = {0, 1}N , Xj

i = 0 or 1 with probability 0.5

Ω = [0, 1]N , Xj
i = random()

• ... but different uniformity criterion can be used

• Using a priori knowledge Inoculate with good solutions

• Result of another evolution Use successive milieux F1,F2, ..



EC - Fitness

Evaluation of the current population

BY FAR the most costly step
in all real-world applications

• Do not re-compute the fitness of unmodified individuals

• Use an approximate fitness as much as possible
build an estimator from the known exact values

• ... but not for too long
Optima of approximate fitness �= real optima



EC - Evolution scheme

Evolution schemes

Selection : Individuals (t) �→ Parents

Replacement : Individuals (t) + Offspring �→ Individuals(t + 1)

• Control the population trajectory

• Control the trade-off between random walk and hill climbing



EC - Evolution scheme - Selection

Selection

Goal : Select reproducers.

• Darwinism: Bias toward the fittest individuals

• Too strong bias: Loss of diversity

• Too small bias: No convergence

Modes

• Deterministic (from fitness comparisons)

• Stochastic: Fitness (order) proportional

• Use prior knowledge



EC - Evolution scheme - Selection

Deterministic Selection/Replacement

Historically: The (µ +, λ)-ES evolution schemes

Scheme : µ parents give λ offspring

Selection / Replacement :

• (µ, λ)-ES : next µ parents = best among the λ offspring.

Pros: Good convergence theoretical results
Diversity more likely preserved

Cons: Might lose the best solution

• (µ + λ)-ES : next µ parents = best among the µ parents
and the λ offspring

Pros: robust
Cons: loss of diversity, premature convergence

Parameters: µ and λ



EC - Evolution scheme - Selection

Stochastic selection

(I) Proportional selection: Roulette wheel

What ? Selection of P parents among Πt = {X1, . . . , XP }

Probability( selecting Xi) ∝ F(Xi)

How ? A roulette wheel: Width of sector i : F(Xi)∑
j
F(Xj)

X
1

X

X

X

2

3

4

Selection of one individual : DF

“Throw the ball” and choose corresponding parent



EC - Evolution scheme - Selection

Roulette wheel (2)

• Roulette wheel: use DF

• Fitness scaling, tune selective pressure ps DF → DαF+β

ps = expected nb of times Xbest is selected

• Fitness ranking use Drank

• Fitness sharing, use DG , with

G(Xi) =
F(Xi)∑

j similarity(X, Xj)



EC - Evolution scheme - Selection

Example

Direction finders with sharing
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EC - Evolution scheme - Selection

Stochastic Selection (II) : Tournament selection

DF ,K

• Uniform selection {Xi1 , . . . , XiK} in Πt

• return ArgMax F

Note :
Easy to tune
Easy to parallelize



EC - Variation Operators

Variation Operators

Selected Individuals = Parents �→ Offspring

MUTATION : Ω �→ Ω
creates a distance

CROSSOVER : Ω × Ω �→ Ω × Ω
creates an adaptive distance

• Genotypic operators
mutation-based distance should reflect genotypic distance

• Roles: permit exploration AND exploitation



EC - Variation Operators - Mutation

Mutation

Ω → Ω

Analogy: asexual reproduction.

Role :
• Exploration — allows evolution to escape

palliates the limitations of crossover

limited by current population diversity

• Exploitation — offspring are on average “close” to the parents.

Historical debate: mutation is

• A background operator for GAs

• The main operator for ES/EP



EC - Variation Operators - Mutation

Bitstring mutations

{0, 1}N → {0, 1}N

Bit-wise mutation

• For each individual parent or offspring created by crossover

• and for each bit position l,

(b1, b2, . . . , bN )
pm−→ (b1, b2, . . . , bl, bl+1, . . . , bN )

• Adjust pm

– for being effective pm > 1
N×P

– if many successful mutations, pm ↗

– else pm ↘
(or restart evolution)



EC - Variation Operators - Mutation

Real mutation

IRN → IRN

Add Gaussian perturbations Xi := Xi + N(0, σ)
All expertise in the choice of σ

• Fitness-based (EP-type)

– Best individuals mutate small Exploitation

– Worse individuals mutate large Exploration

• History-based (Rechenberg 1/5th rule)

– Successful mutation if offspring better than parent

– τ = % successful mutations in the last T generations

– If τ > 0.2 σ ∗ = 1.22 else σ ÷ = 1.22

• Adaptive mutations (modern ES)
σ is adjusted by evolution itself



EC - Variation Operators - Mutation

Adaptive mutation : change the representation

Ω �→ Ω × {mutation parameter} X �→ (X, σ)

A two-step mutation
- Mutate σ

- Mutate Xi using the new σ

σ adjusted “for free”

Why ?

• Successive successful mutations unlikely if σ is totally wrong

• Persistent good offspring result from successive successful mutations

• Persistent offspring must have well-tuned σ



EC - Variation Operators - Mutation

Adaptive mutation (2)

• Scalar Std. Deviation IRN �→ IRN × IR+

• Vector Std. Deviation IRN �→ IRN × IR+ N

(Xi, σi) →




κ = τN(0, 1)

for each coordinate j

σj
i := σj

i exp(κ + τ ′N(0, 1))

Xj
i := Xj

i + N(0, σj
i )

with

τ ∝ 1√
2
√

N

τ ′ ∝ 1√
2N

• Matrix Std Deviation Ω = IRN �→ Ω × IR+ N × [0, 2π]N(N−1)/2



EC - Variation Operators - Crossover

Crossover

Ω × Ω → Ω × Ω

Analogy : Sexual reproduction

Role : Fast Exploitation
Offspring retain some qualities of both parents

Historical debate: crossover is

• The main operator for AG fans

• A useful operator for ES though initially absent

• A useless (or worst) operator for EP



EC - Variation Operators - Crossover

Binary crossover

{0, 1}N × {0, 1}N → {0, 1}N × {0, 1}N

Exchange of bits between both parents

2-points crossover DeJong 75

(b1, . . . , bN )

(c1, . . . , cN )

}
pc−→

{
(b1, .., bl, cl+1, .., cm,bm+1, .., bN )

(c1, .., cl,bl+1, .., bm, cm+1, .., cN )

where l, m = U({1..N − 1}), l �= m



EC - Variation Operators - Crossover

Real crossover

Ω = IRN or
∏

[ai, bi]

Arithmetical crossover Linear combination of parents

• Offspring in segment (X, Y ) α = U([0, 1])

Crossover(X, Y ) = αX + (1 − α)Y

• Offspring in hyperrectangle (X, Y ) αi = U([0, 1])

Crossover(X, Y ) = (αiX
i + (1 − αi)Y i)N

i=1

Prefer αi = U([−r, 1 + r])



EC - Variation Operators - Crossover

Crossover vs mutation

Crossover

• modifications are population-dependent

• “proportional” to diversity

• Exploitation operator (in general)

Mutation

• Mandatory

• Exploration operator (in general)

• Must be able to explore the whole search space

• Destructive effects increase with evolution



EC - Evolution scheme - Replacement

Elitism

Survival of the best current individual

• Theory : speeds up convergence

increases the chance of premature convergence

• Application: hate to lose a good solution

btw, keep best-so-far individual in memory

Elitism

If Max(F(Πt+1)) < Max(F(Πt))
Replace the worst of Πt+1

by the best of Πt



EC - Evolution scheme - Replacement

Stopping Criterion

• When optimum is found

• When no improvement can be expected
Loss of diversity

• When the ratio Expected improvement
Amount of required resource

is too high (bounded rationality)

• When allocated resources have been spent
Maximum number of fitness evaluation

Heuristic :
STOP after a given number of evaluations without improvement

User-defined



EC - Outcomes

Results evaluation

From the application point of view

Design (conception) context
Find at least once a very good solution

Production context
Always find a reasonably good solution



EC - Other things

Other Aspects

• Multi-modal function
Find multiple optima using niching techniques

• Hybridization
Coupling with local methods

• Constrained Optimization

• Multi-objective Optimization

• Genetic Programming



EC - Outcomes

Empirical conclusions

Failures

• I tried to use XXX algorithm, but it didn’t work . . .
No black box usage

• I tried on that quadratic problem, it was dreadfully slow
Do not compete with deterministic methods

whenever these apply

Recommendations

• Yet unsolved problems
irregular, “chaotic” functions and/or constraints

• Multiple optima implicit criteria, multi-criteria

• Ill-posed problems solution validated by the user

• Coupling with local methods ma non troppo
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