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Part II : Feature Selection

Contents� Motivations� State of the art� An (evolutionary) ensemble approach

– A combinatorial optimization criterion, ROC

– An application: Risk for Cardio Vascular Diseases

– Exploiting diverse hypotheses for free with EC



Motivations
Before learning: find a representation of the data...� Too poor representation nothing can be learned� Too detailed representation feature selection needed

Why ?� Machine Learning is not a well-posed problem� =) Adding irrelevant information can harm learning.

What is the goal: Feature Selection / Feature Construction ?� Feature Construction: define relevant features� ... = that enable learning� but: Best features = good hypotheses...



When ML = Feature Selection

Bio-informatics� 30 000 genes� few examples (costly)� Goal: finding the relevant genes



Position of the problem
Training setE = f(xi; yi);xi 2 X = IRd; yi = �1; i = 1::ng
Set of attributesA = fa1; ::adg
Goals� Feature Selection: find a subset offa1; :::; adg� Feature Ranking : find an order onfa1; ::::; adg
Formally
GivenF : P(A) 7! IRA � A 7! Err(A) = min error of hypotheses based onA

Find Argmin(F)
Difficulties� A combinatorial optimization problem (2d)� defined for an unknownF ...



Approaches

Filter univariate methods
Definescore(ai); iteratively, add the features maximizingscore

or remove the features minimizingscorePRO: simple & tractableCON : (very) local optima
Rk : backtracking! better optima, more expensive method

Wrapping multivariate methods
Measure the quality of sets of features

estimateF(ai1; :::aik)CON : expensive: one estimation = one learning pbPRO: better optima



Filter Approaches

Notations
Training set :E = f(xi; yi); i = 1::n; yi 2 f�1; 1gga(xi) = value of featurea for example(xi)
Information gain decision trees

p([a = v]) = Pr(y = 1ja(xi) = v)QI([a = v]) = �p log p � (1� p) log (1� p)
QI =Xv p(v)QI([a = v])

Correlation

corr(a) = Pi a(xi):yipPi(a(xi))2 � Pi y2i /
X
i a(xi):yi



Wrapper Approaches

Generate and test
Given a list of candidatesL = fA1; ::; Apg� Generate candidateA� ComputeF(A)�� learnhA from EjA�� testhA on some test set = F̂(A)� UpdateL.

Algorithms� hill-climbing / multiple restart� genetic algorithms Vafaie-DeJong, IJCAI 95� (*) genetic programming & feature construction.
Krawiec, GPEH 01



A posteriori Approaches

Principle� Construct hypotheses� Induce which are the relevant features� Prune the (most) irrelevant features� Iterate.

Algorithm : SVM Recursive Feature Elimination Guyon et al. 03� Linear SVM! h(x) = sign(Pwi:ai(x) + b)� If jwij is small,ai is not relevant� Prune thek features with minimal absolute weight� Iterate.



Limitations

Linear Hypotheses� One weight per feature.

Amount of examples� The features weights are not independent.
[algebraically, the weight vector lies

in the subspace defined from the examples

But FS is when the number of examples is insufficient...



An evolutionary approach: ROGER

Overview� A combinatorial optimization formulation for ML
tackled by Evolutionary Computation

� A real-world application: Risk for Cardio-Vascular Diseases
and some remarks on the risk attached to tobacco and alcool...

� Defining more complex hypotheses
i) non-linear; ii) allowing for scoring the features

� Exploit the variability of solutions provided by a stochastic opti-
mization method (GA)=) Ensemble learning.



ROC criterion
Receiver Operating Characteristics

Principle signal processing, medical data analysis
Let h(x) be the risk of patientx. h : X 7! IR

t 2 IR 7! ht(x) = � ill if h(x) > tOK otherwise
For anyht, let:� TP(t) : true positive rate,Pr(ht(x) = illjx ill)� FP(t) : false positive rate,Pr(ht(x) = illjx not ill).
Plot the curve(TP (t); FP (t); t 2 IR).



ROC Curve
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ROC Curve, 2

ROC depicts the trade-off False Positive / True Positive.

Standard: misclassification cost (Domingos, KDD 99)

F = # false positive+ c� # false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with�(�c;�1)
ROC: Extensively Used by Physicians



ROC Curve, 3

Used to compare learners Bradley 97
multi-objective-like
insensitive to imbalanced distributions
shows sensitivity to error cost.

Used as learning criterion: Area under the ROC curve
Given Dataset =f(xi; yi);xi 2 IRd; yi 2 f�1; 1g g
Genotype: hypothesish 7! Phenotype: ordered examples

+++�++�++++���+���+���������

F(h) = sum of ranks of positive examples. AUC : to be maximized



Area Under the ROC Curve

Previous
EP-based NN optimization Fogel+, 1998
GA-based linear optimization Mozer+, 2001
greedy Decision Tree optimization Ferri-Flach, 2002

ROGER: ROC-based Genetic Evolutionary LearneR(� + �)-ES (Evolution Strategy)

Parameters

population size # parents� 10
# offspring� 50

max nb evaluations 10,000
crossover uniform rate .6
mutation self-adaptive rate 1



Experiments
Reference results: Support Vector Machines (SVMTorch)

Search space: linear classifiers :IRd

Datasets from Irvine repository

#att #weight #Train #Test
Br. Canc. 9 42 189 97

Crx 15 47 70 620
German 25 25 100 900

Promoters 59 229 70 36
Satimage 36 36 139 1237
Vehicle 18 18 125 291
Votes 16 32 287 148

Waveform 22 22 211 3321

ROGER SVMTorch
AUC time AUC time

.674� .05 7” .672� .05 1”

.816� .06 7” .839� .04 886”

.712� .03 6” .690� .02 96”

.863� .07 2” .974� .02 < 1”

.918� .01 4” .876� .02 14”
.994� .005 1” .993� .007 < 1”
.993� .004 7” .989� .005 > 1,000
.971� .004 4” .963� .008 2”

Experimental setting
10 train/test splits
For each split, 1 SVMTorch run, 21 ROGER runs (take median)



ROC Curve, Promoters
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ROC Curve, Satimage
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Partial conclusions - ML aspects

PROS� Competitive wrt state of art, SVM.� Affordable cost, fitness computationnlog(n)� Learning stability wrt imbalanced distribution, error cost

CONS 2003� Does not scale up well with # attributes



An evolutionary approach: ROGER

Overview� A combinatorial optimization formulation for ML
tackled by Evolutionary Computation

� A real-world application: Risk for Cardio-Vascular Diseases
and some remarks on the risk attached to tobacco and alcool...

� Defining more complex hypotheses
i) non-linear; ii) allowing for scoring the features

� Exploit the variability of solutions provided by a stochastic opti-
mization method (GA)=) Ensemble learning.



A Medical Data Mining Application



Understanding Cardio-vascular Diseases

PKDD 2002-2003 Challenge� Study Atherosclerosis Risk FactorsFirst death cause in Western countries

Data� ENTRY database (medical cliché, 1419 men, 219 attributes, 1976)� CONTROL database (longitudinal study of a sample, 1976-1996)

First goal� Given the medical cliché att0, predict health state att0 + 20.



Some limitations of the data

Initial description:
very detailed diseases 1st..4th brother, 1st..4th sister

...not usable... 4th sister INF MYOCARD....

What cannot be learned: sufficient conditions for diseases
(1) If father or mother diabetic
(2) And high stress
(3) And does not laugh once a day

Then disease
... (Condition 3 likely missing in hospital db)! find at best necessary conditions



Changing the problem

Initial goal: classification predefined classes

Patient7! f normal, at risk, pathologicalg
Alternative: ranking Mr X is more at risk than MsY

(Patient� Patient)7! ftrue; falseg
concept is smoother (frontier between normal and pathological)

more flexible (medical / economical concerns)

Proposed: “underconstrained regression” Risk(MrX) is 3.7

Patient7! IR



Atherosclerosis
Experimental setting: 2/3 training, 1/3 test � 10

On each training set, 21 independent runs
Display the median ROC curve

False Positive

T
ru

e 
P

os
it

iv
e

0 10.5
0

1

0.5

ROGER
SVM 

ROC Curves on Atherosclerosis



Influence Analysis - The tobacco factor
Procedure

A = { 100 non smoking individuals }
B = { 100 most smoking individuals }
Sort A and B by increasing value of the risk
Plot (i, risk(i))

10 30 50 70 90

300

400

500

600

heavy smokers  
light smokers
median            



Influence Analysis - The alcool factor
A = { 100 light drinkers }
B = { 100 heavy drinkers }
Sort A and B by increasing value of the risk
Plot (i, risk(i))
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Sensitivity Analysis - For free
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Conclusions - Perspectives

ICDM 2003, AE 2003
Present� Good predictive performances� Affordable complexity� UNDERSTANDABLE RESULTS

Using Vision to Think, Card et al. 2001

Next 2004� Extend to kernel spaces� Use for constructive induction



An evolutionary approach: ROGER

Overview� A combinatorial optimization formulation for ML
tackled by Evolutionary Computation

� A real-world application: Risk for Cardio-Vascular Diseases
and some remarks on the risk attached to tobacco and alcool...

� Defining more complex hypotheses
i) non-linear; ii) allowing for scoring the features

� Exploit the variability of solutions provided by a stochastic opti-
mization method (GA)=) Ensemble learning.



A more complex hypothesis space

Linear space

h(x) =Xi wiai(x) h � w 2 IRd
Coarse non linear space

h(x) =Xi wijai(x)� cij h � (w; c) 2 IR2d
Advantages

non linear hypotheses
linear search spaceIR2dscore(atribut ai) = wi.



An evolutionary approach: ROGER
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Evolutionary computation and Ensemble
Learning

Ensemble learning H: hypothesis space� Error = bias + variance

� Bias : the best one can do onHErr(h�) = ArgminfErr(h); h 2 Hg
� Variance : we don’t geth�, alas.

But instead̂hn, depending on then training examples



Ensemble learning, 2
Principle : reducing the variance� Learnh1; ::hT , decorrelated� With a “reasonably low” error weak learning

Pr(hi(x) = y) = 12 + �
� The vote (or linear aggregation of thehi, improves on the besthi

Sketch of proof : Hoeffding inequality� Let Vi be random independent boolean variables, with probabilityp.� Let YT be the sum ofV1; ::VT
Pr(jYT � T � pj > �) < exp�2�T 2



Evolutionary computation
and Ensemble Methods, 2

Stochastic Algorithm� Each run! a hypothesis.� Each hypothesis! an order on the features.

Weak order� Let fa1; ::aNg denote the target order� ht : induces an order relation<t on features� Assume these are weak orders:

P (ai <t ajji < j) > 12 + �
Agregating weak orders� Define<� as:

(ai <� aj)() jft=ai <t jgj > T2



Evolutionary computation
and Ensemble Methods, 3

The agregated order is an order

Pr(i <� kji <� j et j <� k)! 1 as T !1
.. which goes toward the target order asT goes to1� LetO�(i) = jfj=i <� jgj, then

Pr(jO�(i)� ij > � )! 0



Validation

Difficulty� Validation of a feature subset ==
generalization error of the best hypothesis based on these features) No way, for validating a feature selection/ranking methodper se

Approache� Artificial datasets�Whose solution is known: can the method find the solution ?� Enable “Lesions studies” :
noise, scalability, wrt nb examples, features...



Artificial datasets

Order parameters� Nb features d = 100; 200; 500� Nb examples n = d=2; d; 2d� Nb relevant features r = d=20; d=10; d=5� Type of target concept : Linear / Non Linear� Class noise e = 0; 5; 10%� Feature noise � = 0; 0:05; 0:1



Construct an artificial dataset(d; n; r; l; e; �)

Select the relevant features :f1; 2; :::rg amongf1; ::dg
For each examplexj� For i = 1::d, drawai(xj) uniformly in [0; 1]
Constructyj� Linear target concept:

yj = ( rX
i=1 ai(xj) > r2)

� Non-linear target concept:

yj = ( rX
i=1 jai(xj)� :5j < r12)



Construct an artificial dataset
(d; n; r; l; e; �); 2

Perturbations� yj = �yj with probabilitye� ai(xj) + = N (0; �)
Experimental setting
For each tuple(d; n; r; l; e; �), construct 20 datasets

Foreach dataset, learn 20 hypotheses 20 runs
Agregate the orders based on the 20 hypotheses
Compare the agregate order with the target order

Average the ranking error over the 20 datasets.



Baseline Algorithm

Stoppiglia et al., JMLR 2003

Score of a feature� Cosine : score(a) =
Pi a(xi):yi

Gauss-Schmidt iterative projection� Find the best featurea� Project the dataset and the concepts on the subspace orthogonal toa.



Performance measure

For iterative selectionpb probability for the top-ranked feature to be relevant

For iterative eliminationpw rank of the last relevant feature

Tradeoff
True relevant ratevsFalse relevant rate (ROC)



Comparison on linear concepts
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Comparison on non linear concepts
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Ensemble Feature Ranking
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Conclusion

Contributions� weak ranking) strong ranking� EC enables ensemble methods “for free”� a principled framework for evaluating feature ranking/selection

Limits� Only conjunctive concepts.

Next� Multi-modal evolution / several hypotheses in a population.


