PhD Programme in Computer Science and MathematicsYou are here: Home > Co-Funded Scholarships > PON RI 2014-2020
Il Dottorato di Ricerca in Informatica e Matematica ha avuto dal PON RI 2014-2020 il finanziamento di borse aggiuntive. Con il Decreto Direttoriale 29 luglio 2016, n. 1540, e D.D. 5 giugno 2017, n.1377, il Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) ha avviato e proseguito, rispettivamente, l'attuazione delle misure a sostegno del capitale umano previste dal PON Ricerca e Innovazione 2014-2020 (PON RI): Asse I - Investimenti in capitale umano L'intervento si inserisce all'interno del Programma Nazionale della Ricerca 2015-2020 e prevede il finanziamento di borse di dottorato di durata triennale, cofinanziate dal Fondo sociale europeo (FSE), aggiuntive rispetto a quelle già finanziate dalle Università. Il PON RI 2014-2020 interessa le regioni in transizione (Abruzzo, Molise e Sardegna) e le regioni in ritardo di sviluppo (Basilicata, Calabria, Campania, Puglia, Sicilia) con una dotazione finanziaria complessiva di 1.286 milioni di euro. Ulteriori dettagli a http://www.ponricerca.gov.it Obiettivo prioritario del PON RI è il riposizionamento competitivo delle regioni più svantaggiate allo scopo di produrre mutamenti di valenza strutturale per accrescere la capacità di produrre e utilizzare ricerca e innovazione di qualità per l'innesco di uno sviluppo intelligente, sostenibile e inclusivo. Si intende pertanto intensificare la collaborazione con il mondo imprenditoriale e consentire ai dottorandi di qualificare "in senso industriale" le proprie esperienze formative e di ricerca, con ricadute sia sul tessuto produttivo dei territori interessati dal programma sia occupazionali.
Ciclo XXXII - Anno Accademico 2016/2017
Il Dottorato in Informatica e Matematica ha avuto il finanziamento di 1 borsa aggiuntiva:
Il Dottorato in Informatica e Matematica ha avuto il finanziamento di 2 borse aggiuntive:
Ciclo XXXIV - Anno Accademico 2018/2019
Finanziamento di 201 borse di dottorato innovativo con caratterizzazione industriale (Decreto direttoriale n. 2983 del 5 novembre 2018), di cui:
Il Dottorato in Informatica e Matematica ha avuto il finanziamento di 2 borse aggiuntive:
Ciclo XXXVI - Anno Accademico 2020/2021
Finanziamento di borse di dottorato innovativo con caratterizzazione industriale (Decreto direttoriale n. 1233 del 30 luglio 2020) per un importo pari a € 16.000.000,00 per le Università statali e non statali, riconosciute dal Ministero dell’Università e della Ricerca, con sede amministrativa ed operativa nelle Regioni meno sviluppate (Basilicata, Calabria, Campania, Puglia e Sicilia) e nelle regioni in transizione (Abruzzo, Molise, Sardegna), Il Dottorato in Informatica e Matematica ha avuto il finanziamento di 1 borsa aggiuntiva:
Ciclo XXXVII- Anno Accademico 2021/2022 Finanziamento di borse di dottorato aggiuntive su tematiche dell'innovazione (Azione IV.4- D.M. 1061 del 10.08.2021) a favore di dottorandi selezionati sulla base di Avvisi specifici pubblicati dai singoli soggetti in attuazione del DM 1061 nell’ambito dei Corsi di Dottorato di ricerca e dei Programmi di dottorato nazionale Il Ministro dell’università e della ricerca accreditati ex DM 45/2013 XXXVII ciclo - anno accademico 2021/2022. Obiettivo della misura è finanziare borse di dottorato aggiuntive su tematiche dell'innovazione, ovvero percorsi dottorali focalizzati sui temi dell’innovazione, delle tecnologie abilitanti e del più ampio tema del digitale, quali interventi di valorizzazione del capitale umano del mondo della ricerca e dell’innovazione. Il Dottorato in Informatica e Matematica ha avuto il finanziamento di 4 borse aggiuntive:
PON fellowship XXXII cycle - PhD Student Alessandra LEGRETTO Models, techniques and tools for predictive analysis of large quantity of data through interactive visual techniques The research aims to investigate innovative models, techniques and tools of Predictive Visual Analytics, which may represent a very good support for the Big Data analyst. Today, analysts increasingly deal with Big Data, that are data collections that require storage, management and analysis capabilities that traditional systems cannot provide. Predictive analysis is an important part of data analysis. Statistics and Machine Learning provide various predictive methods mainly for regression and classification purposes. Recent research has begun to consider interactive visual approaches in order to improve predictive analysis. Visual Analytics techniques use interactive visualizations to provide the analysts with additional knowledge about the data allowing them to guide the analysis process. In this area, there are a number of open issues to be investigated. The research is carried out in collaboration with the Links company in Lecce and the New York University in New York, USA.
PON fellowship XXXIII cycle - PhD Student Lucio COLIZZI Business Process Management (BPM) e Case Management (CM) for Enhanced Care Pathway In the last two decades there has been a growing interest in investigating the correlation between funds spent in private/public healthcare and the actual quality of service as perceived by citizens accessing medical care services. This issue, also called disease management, is defined as the complex decision making process aiming to determine a program of coordinated healthcare interventions minimizing both the healthcare costs and the effects of disease for individuals. This industrial PhD program will focus on how tools and methodologies coming from Business Processes Management (BPM) and Case Management (CM - coordination of services on behalf of an individual person who may be considered a case in different settings such as health care, nursing, rehabilitation, social work, disability insurance, employment, and law) can be integrated in order to support the decision makers, i.e. care managers and medics. In this research stream, one of the main approach will be the Integrated Care Pathway (ICP). The research is carried out in collaboration with the Openwork srl company in Bari and the University of Castilla Lamancia in Spain.
PON fellowship XXXIII cycle - PhD Student Loredana VERARDI Pattern-Based Business Process Digitalization Effective digitalization of business processes is fundamental in order to offer efficient services to users who, for example, would like to connect to the website or make a call to the call center of energy suppliers and have the service activated in a few minutes. The digitalization of business processes, and their subsequent re-engineering, is a complex task that small and medium-sized enterprises (SMEs) do not always sustain, making necessary maximizing the reuse in different contexts of well-established solutions to recurring problems. The objective of this industrial PhD program is the definition of methodologies and tools for the digitalisation, based on patterns, of business processes in the context of Smart Communities and Industry 4.0. The Internet of Everything (IoE) technological paradigm will be integrated, which allows people and objects to collaborate through the exchange of data and information made available by digital business processes integrated and shared on the network. The research is carried out in collaboration with AQC Lab in Spain (the only European laboratory accredited by ENAC for the certification of ISO 25,000 products) and with Sincon srl, an SME in Taranto, very active in the field of Digitization.
PON fellowship XXXIV cycle - PhD Student Vincenzo PASQUADIBISCEGLIE Big Data Analytics for Process Improvement in Organizational Development Modern information systems that support complex organizational processes maintain significant amounts (event logs) of process execution data describing the sequence of activities of actors involved in the organizational development of a business process. Process mining techniques have recently gained momentum in the analysis of data extracted from event logs as they provide surprising insights for managers, system developers, auditors and end users. Being able to describe and predict behaviour and organization of a process is an important business capability. In particular, the effectiveness of a managerial decision-making response to variation in the environment may strongly depend on the extent to which it can reduce the impact of uncertainty through prediction and conformance. This industrial PhD project will focus on models, techniques and tools coming from Process Mining, Machine Learning and Big Data analytics, in order to support the organization decision makers in the optimization of productive processes (e.g. marketing strategy, risk planning, resource organization). The research is carried out in collaboration with the MTMProject srl company in Monopoli and the RWTH Aachen University in Germany.
PON fellowship XXXIV cycle - PhD Student Cristiano TAMBORRINO Change detection in remote sensing Technological innovation in recent years has made available various sources of geospatial data, such as satellite and aerial images, optical, radar and point clouds data, elevation models. Big Data in the geospatial field refer to large aggregations of data, whose size and complexity requires more advanced tools than the traditional ones, at all stages of their processing. The Big Data determine several challenges, but also opportunities. Main challenges are related to their complexity, as well as to the difficulty of properly integrate and process data from completely different sources and different in type, characteristics, resolution, size, etc. The proposed research will try to extract high quality information from the available data. In particular we look for change detection strategy, by using a holistic combination of statistical, numerical and spatio-temporal data mining methods. Such a combined approach allows us to obtain information of higher quality and value because they are based on the most comprehensive and integrated analysis. The research is carried out in collaboration with the company Planetek Italia and with TETIS Lab of Irstea (National Research Institute of Science and Technology for Environment and Agriculture) in Montpellier.
PON fellowship XXXVI cycle - PhD Student Malik Mohammad Mnahi AL-Essa Machine Learning for Cyber Threat Investigation and Cyber Defense As the world is becoming more and more digitalized, powerful security precautions are required to make public and private infrastructures more resilient to a broad range of cyber-threats (e.g. network intrusions, malware). During the last decade, the cybersecurity literature has conferred a high-level role to machine learning and, in particular, deep learning as a powerful learning paradigm to detect ever-evolving cyber-threats in modern security systems. Despite the amazing results recently achieved with deep learning methods in securing the digital infrastructures of modern organizations, the security of neural models can easily be jeopardized by adversarial attacks. In addition, neural models are commonly trained as deep neural network black boxes. The explanation of neural model decisions is difficult due to the complexity of the neural network architecture. On the other hand, decision explanations can provide measurable factors whose features influence the detection of cyber-threats and to what extent by disclosing useful insights to strengthen the robustness of cybersecurity systems to evolving cyber-attacks. The research is carried out in collaboration with the Security Architect srl company in Bari and the Informatics Department of the King’s College in UK.
PON Innovation and Green fellowship XXXVII cycle - PhD Student Vincenzo Gattulli Biometrics for Safety and Health in Real-World Contexts Behavioral Biometrics is a branch of artificial intelligence that analyzes signals derived from human behavior. It is used for various purposes ranging from classification and then detection of diseases, for example, detection in the early stage of neurodegenerative diseases by walking or handwriting, to biometric security purposes such as recognizing people from walking and then granting or denying access to certain areas. The biometric field could cover topics such as re-identification, Face Recognition (FR), Gait Analysis (GA), Soft Biometrics Techniques (SB), Huma Activity Recognition (HAR), and Anomaly Detection Analysis to identify suspicious user behaviors. The purpose of this Ph.D. is to implement systems capable of reporting anomalies and other related indices to support decision-making in security monitoring and early detection of various types of diseases identifiable by artificial intelligence techniques based on behavioral Biometrics. The activities include a 6-month internship at Digital Innovation.
PON Innovation and Green fellowship XXXVII cycle - PhD Student Sabina Akram Methodologies and techniques for creating Human-centered Intelligent systems The current emphasis on Artificial Intelligence (Al) has led to a new research area, called Human-Centered Artificial Intelligence (HCAI), whose goal is to promote an innovative vision of intelligent systems that take advantage of computer features, such as powerful algorithms, big data management, advanced sensors and that are useful and usable for people, providing high levels of automation and enabling high levels of human control. Thus, HCAI perspective shifts the attention from an algorithm-focused view to a human-centered perspective that requires HCI strategies of design and testing. To comply with this need, the project aims to define a new framework able to support designers in creating HCAI systems that may better satisfy human beings.The activities include a 6-month internship at Experis Srl.
PON Innovation and Green fellowship XXXVII cycle - PhD Student Muhammad Imran Artificial Intelligence in malware and intrusion detection
In the digital age powerful security precautions are required to make IT systems more resilient to a broad range of cyber-threats (e.g., network intrusions and malware). During the last decade, Artificial Intelligence (AI) techniques have gained a high-level role in cybersecurity as a powerful learning paradigm to detect cyber-threats in modern security systems. Although amazing advances in demonstrate unprecedented levels of performance in cybersecurity applications, their vulnerability to attacks is still an open question. Adversarial examples are small modifications of legitimate inputs, which can cause misclassification at inference time in operational conditions. Adversarial machine learning algorithms deal with adversarial sample generation, which is creating altered input data that are capable of deceiving machine learning models. Due to the critical nature of the applications of AI in cybersecurity, it is important to model the adversary and their strategies to attack the decision-making algorithms to represent a realistic adversary in a cyber scenario. The phD project will explore the potential of defensive adversarial learning practices to improve the security and resilience of AI-based cybersecurity controls in malware and intrusion detection.
PON Innovation and Green fellowship XXXVII cycle - PhD Student Anibrata Pal Quantum Software Engineering for Security With the advent of Quantum Computing and exponential research endeavors in the area, we are looking towards a Golden Era of Quantum Computing. Now, when Quantum Software Engineering(QSE) is in its infancy, and quantum computers are said to be in NISQ (Noisy intermediate scale quantum era), we are looking towards the age of Hybrid Classical-Quantum Computers. Since, security and privacy are one of the most important aspects in Software Engineering which needs to be updated & improved continuously for the safety & integrity of the softwares and the users, these are equally indispensible for quantum hybrid computers. The quantum hype has led to immense research impetus for development of quantum technologies, but security and privacy frameworks and guidelines are still nebulous in the QSE domain. In the proposed research we primarily aim to define models and/or frameworks for the implementation of the principles of Security-by-Design (SbD) and Privacy-by-Design (PbD) in QSE. It is important that we are ready with the guidelines of Security and Privacy by design, so that the quantum, hybrid software systems are able to detect, protect and, react rapidly and appropriately to malicious attacks and/or any fraudulent access. The activities include a 6-month internship at Ser&P.
|